| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplr |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> A e. NN ) |
| 2 |
1
|
nnnn0d |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> A e. NN0 ) |
| 3 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 4 |
3
|
ad2antrr |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> P e. NN ) |
| 5 |
|
pccl |
|- ( ( P e. Prime /\ A e. NN ) -> ( P pCnt A ) e. NN0 ) |
| 6 |
5
|
adantr |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P pCnt A ) e. NN0 ) |
| 7 |
4 6
|
nnexpcld |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P ^ ( P pCnt A ) ) e. NN ) |
| 8 |
7
|
nnnn0d |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P ^ ( P pCnt A ) ) e. NN0 ) |
| 9 |
6
|
nn0red |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P pCnt A ) e. RR ) |
| 10 |
9
|
leidd |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P pCnt A ) <_ ( P pCnt A ) ) |
| 11 |
|
simpll |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> P e. Prime ) |
| 12 |
6
|
nn0zd |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P pCnt A ) e. ZZ ) |
| 13 |
|
pcid |
|- ( ( P e. Prime /\ ( P pCnt A ) e. ZZ ) -> ( P pCnt ( P ^ ( P pCnt A ) ) ) = ( P pCnt A ) ) |
| 14 |
11 12 13
|
syl2anc |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P pCnt ( P ^ ( P pCnt A ) ) ) = ( P pCnt A ) ) |
| 15 |
10 14
|
breqtrrd |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P pCnt A ) <_ ( P pCnt ( P ^ ( P pCnt A ) ) ) ) |
| 16 |
15
|
ad2antrr |
|- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p = P ) -> ( P pCnt A ) <_ ( P pCnt ( P ^ ( P pCnt A ) ) ) ) |
| 17 |
|
simpr |
|- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p = P ) -> p = P ) |
| 18 |
17
|
oveq1d |
|- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p = P ) -> ( p pCnt A ) = ( P pCnt A ) ) |
| 19 |
17
|
oveq1d |
|- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p = P ) -> ( p pCnt ( P ^ ( P pCnt A ) ) ) = ( P pCnt ( P ^ ( P pCnt A ) ) ) ) |
| 20 |
16 18 19
|
3brtr4d |
|- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p = P ) -> ( p pCnt A ) <_ ( p pCnt ( P ^ ( P pCnt A ) ) ) ) |
| 21 |
|
simplrr |
|- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> A || ( P ^ n ) ) |
| 22 |
|
prmz |
|- ( p e. Prime -> p e. ZZ ) |
| 23 |
22
|
adantl |
|- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> p e. ZZ ) |
| 24 |
1
|
adantr |
|- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> A e. NN ) |
| 25 |
24
|
nnzd |
|- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> A e. ZZ ) |
| 26 |
|
simprl |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> n e. NN0 ) |
| 27 |
4 26
|
nnexpcld |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P ^ n ) e. NN ) |
| 28 |
27
|
adantr |
|- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> ( P ^ n ) e. NN ) |
| 29 |
28
|
nnzd |
|- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> ( P ^ n ) e. ZZ ) |
| 30 |
|
dvdstr |
|- ( ( p e. ZZ /\ A e. ZZ /\ ( P ^ n ) e. ZZ ) -> ( ( p || A /\ A || ( P ^ n ) ) -> p || ( P ^ n ) ) ) |
| 31 |
23 25 29 30
|
syl3anc |
|- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> ( ( p || A /\ A || ( P ^ n ) ) -> p || ( P ^ n ) ) ) |
| 32 |
21 31
|
mpan2d |
|- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> ( p || A -> p || ( P ^ n ) ) ) |
| 33 |
|
simpr |
|- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> p e. Prime ) |
| 34 |
11
|
adantr |
|- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> P e. Prime ) |
| 35 |
|
simplrl |
|- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> n e. NN0 ) |
| 36 |
|
prmdvdsexpr |
|- ( ( p e. Prime /\ P e. Prime /\ n e. NN0 ) -> ( p || ( P ^ n ) -> p = P ) ) |
| 37 |
33 34 35 36
|
syl3anc |
|- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> ( p || ( P ^ n ) -> p = P ) ) |
| 38 |
32 37
|
syld |
|- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> ( p || A -> p = P ) ) |
| 39 |
38
|
necon3ad |
|- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> ( p =/= P -> -. p || A ) ) |
| 40 |
39
|
imp |
|- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p =/= P ) -> -. p || A ) |
| 41 |
|
simplr |
|- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p =/= P ) -> p e. Prime ) |
| 42 |
1
|
ad2antrr |
|- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p =/= P ) -> A e. NN ) |
| 43 |
|
pceq0 |
|- ( ( p e. Prime /\ A e. NN ) -> ( ( p pCnt A ) = 0 <-> -. p || A ) ) |
| 44 |
41 42 43
|
syl2anc |
|- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p =/= P ) -> ( ( p pCnt A ) = 0 <-> -. p || A ) ) |
| 45 |
40 44
|
mpbird |
|- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p =/= P ) -> ( p pCnt A ) = 0 ) |
| 46 |
7
|
ad2antrr |
|- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p =/= P ) -> ( P ^ ( P pCnt A ) ) e. NN ) |
| 47 |
41 46
|
pccld |
|- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p =/= P ) -> ( p pCnt ( P ^ ( P pCnt A ) ) ) e. NN0 ) |
| 48 |
47
|
nn0ge0d |
|- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p =/= P ) -> 0 <_ ( p pCnt ( P ^ ( P pCnt A ) ) ) ) |
| 49 |
45 48
|
eqbrtrd |
|- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p =/= P ) -> ( p pCnt A ) <_ ( p pCnt ( P ^ ( P pCnt A ) ) ) ) |
| 50 |
20 49
|
pm2.61dane |
|- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> ( p pCnt A ) <_ ( p pCnt ( P ^ ( P pCnt A ) ) ) ) |
| 51 |
50
|
ralrimiva |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> A. p e. Prime ( p pCnt A ) <_ ( p pCnt ( P ^ ( P pCnt A ) ) ) ) |
| 52 |
1
|
nnzd |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> A e. ZZ ) |
| 53 |
7
|
nnzd |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P ^ ( P pCnt A ) ) e. ZZ ) |
| 54 |
|
pc2dvds |
|- ( ( A e. ZZ /\ ( P ^ ( P pCnt A ) ) e. ZZ ) -> ( A || ( P ^ ( P pCnt A ) ) <-> A. p e. Prime ( p pCnt A ) <_ ( p pCnt ( P ^ ( P pCnt A ) ) ) ) ) |
| 55 |
52 53 54
|
syl2anc |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( A || ( P ^ ( P pCnt A ) ) <-> A. p e. Prime ( p pCnt A ) <_ ( p pCnt ( P ^ ( P pCnt A ) ) ) ) ) |
| 56 |
51 55
|
mpbird |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> A || ( P ^ ( P pCnt A ) ) ) |
| 57 |
|
pcdvds |
|- ( ( P e. Prime /\ A e. NN ) -> ( P ^ ( P pCnt A ) ) || A ) |
| 58 |
57
|
adantr |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P ^ ( P pCnt A ) ) || A ) |
| 59 |
|
dvdseq |
|- ( ( ( A e. NN0 /\ ( P ^ ( P pCnt A ) ) e. NN0 ) /\ ( A || ( P ^ ( P pCnt A ) ) /\ ( P ^ ( P pCnt A ) ) || A ) ) -> A = ( P ^ ( P pCnt A ) ) ) |
| 60 |
2 8 56 58 59
|
syl22anc |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> A = ( P ^ ( P pCnt A ) ) ) |
| 61 |
60
|
rexlimdvaa |
|- ( ( P e. Prime /\ A e. NN ) -> ( E. n e. NN0 A || ( P ^ n ) -> A = ( P ^ ( P pCnt A ) ) ) ) |
| 62 |
3
|
adantr |
|- ( ( P e. Prime /\ A e. NN ) -> P e. NN ) |
| 63 |
62 5
|
nnexpcld |
|- ( ( P e. Prime /\ A e. NN ) -> ( P ^ ( P pCnt A ) ) e. NN ) |
| 64 |
63
|
nnzd |
|- ( ( P e. Prime /\ A e. NN ) -> ( P ^ ( P pCnt A ) ) e. ZZ ) |
| 65 |
|
iddvds |
|- ( ( P ^ ( P pCnt A ) ) e. ZZ -> ( P ^ ( P pCnt A ) ) || ( P ^ ( P pCnt A ) ) ) |
| 66 |
64 65
|
syl |
|- ( ( P e. Prime /\ A e. NN ) -> ( P ^ ( P pCnt A ) ) || ( P ^ ( P pCnt A ) ) ) |
| 67 |
|
oveq2 |
|- ( n = ( P pCnt A ) -> ( P ^ n ) = ( P ^ ( P pCnt A ) ) ) |
| 68 |
67
|
breq2d |
|- ( n = ( P pCnt A ) -> ( ( P ^ ( P pCnt A ) ) || ( P ^ n ) <-> ( P ^ ( P pCnt A ) ) || ( P ^ ( P pCnt A ) ) ) ) |
| 69 |
68
|
rspcev |
|- ( ( ( P pCnt A ) e. NN0 /\ ( P ^ ( P pCnt A ) ) || ( P ^ ( P pCnt A ) ) ) -> E. n e. NN0 ( P ^ ( P pCnt A ) ) || ( P ^ n ) ) |
| 70 |
5 66 69
|
syl2anc |
|- ( ( P e. Prime /\ A e. NN ) -> E. n e. NN0 ( P ^ ( P pCnt A ) ) || ( P ^ n ) ) |
| 71 |
|
breq1 |
|- ( A = ( P ^ ( P pCnt A ) ) -> ( A || ( P ^ n ) <-> ( P ^ ( P pCnt A ) ) || ( P ^ n ) ) ) |
| 72 |
71
|
rexbidv |
|- ( A = ( P ^ ( P pCnt A ) ) -> ( E. n e. NN0 A || ( P ^ n ) <-> E. n e. NN0 ( P ^ ( P pCnt A ) ) || ( P ^ n ) ) ) |
| 73 |
70 72
|
syl5ibrcom |
|- ( ( P e. Prime /\ A e. NN ) -> ( A = ( P ^ ( P pCnt A ) ) -> E. n e. NN0 A || ( P ^ n ) ) ) |
| 74 |
61 73
|
impbid |
|- ( ( P e. Prime /\ A e. NN ) -> ( E. n e. NN0 A || ( P ^ n ) <-> A = ( P ^ ( P pCnt A ) ) ) ) |