| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elznn0nn |  |-  ( A e. ZZ <-> ( A e. NN0 \/ ( A e. RR /\ -u A e. NN ) ) ) | 
						
							| 2 |  | pcidlem |  |-  ( ( P e. Prime /\ A e. NN0 ) -> ( P pCnt ( P ^ A ) ) = A ) | 
						
							| 3 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 4 | 3 | adantr |  |-  ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> P e. NN ) | 
						
							| 5 | 4 | nncnd |  |-  ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> P e. CC ) | 
						
							| 6 |  | simprl |  |-  ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> A e. RR ) | 
						
							| 7 | 6 | recnd |  |-  ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> A e. CC ) | 
						
							| 8 |  | nnnn0 |  |-  ( -u A e. NN -> -u A e. NN0 ) | 
						
							| 9 | 8 | ad2antll |  |-  ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> -u A e. NN0 ) | 
						
							| 10 |  | expneg2 |  |-  ( ( P e. CC /\ A e. CC /\ -u A e. NN0 ) -> ( P ^ A ) = ( 1 / ( P ^ -u A ) ) ) | 
						
							| 11 | 5 7 9 10 | syl3anc |  |-  ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> ( P ^ A ) = ( 1 / ( P ^ -u A ) ) ) | 
						
							| 12 | 11 | oveq2d |  |-  ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> ( P pCnt ( P ^ A ) ) = ( P pCnt ( 1 / ( P ^ -u A ) ) ) ) | 
						
							| 13 |  | simpl |  |-  ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> P e. Prime ) | 
						
							| 14 |  | 1zzd |  |-  ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> 1 e. ZZ ) | 
						
							| 15 |  | ax-1ne0 |  |-  1 =/= 0 | 
						
							| 16 | 15 | a1i |  |-  ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> 1 =/= 0 ) | 
						
							| 17 | 4 9 | nnexpcld |  |-  ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> ( P ^ -u A ) e. NN ) | 
						
							| 18 |  | pcdiv |  |-  ( ( P e. Prime /\ ( 1 e. ZZ /\ 1 =/= 0 ) /\ ( P ^ -u A ) e. NN ) -> ( P pCnt ( 1 / ( P ^ -u A ) ) ) = ( ( P pCnt 1 ) - ( P pCnt ( P ^ -u A ) ) ) ) | 
						
							| 19 | 13 14 16 17 18 | syl121anc |  |-  ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> ( P pCnt ( 1 / ( P ^ -u A ) ) ) = ( ( P pCnt 1 ) - ( P pCnt ( P ^ -u A ) ) ) ) | 
						
							| 20 |  | pc1 |  |-  ( P e. Prime -> ( P pCnt 1 ) = 0 ) | 
						
							| 21 | 20 | adantr |  |-  ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> ( P pCnt 1 ) = 0 ) | 
						
							| 22 |  | pcidlem |  |-  ( ( P e. Prime /\ -u A e. NN0 ) -> ( P pCnt ( P ^ -u A ) ) = -u A ) | 
						
							| 23 | 9 22 | syldan |  |-  ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> ( P pCnt ( P ^ -u A ) ) = -u A ) | 
						
							| 24 | 21 23 | oveq12d |  |-  ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> ( ( P pCnt 1 ) - ( P pCnt ( P ^ -u A ) ) ) = ( 0 - -u A ) ) | 
						
							| 25 |  | df-neg |  |-  -u -u A = ( 0 - -u A ) | 
						
							| 26 | 7 | negnegd |  |-  ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> -u -u A = A ) | 
						
							| 27 | 25 26 | eqtr3id |  |-  ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> ( 0 - -u A ) = A ) | 
						
							| 28 | 24 27 | eqtrd |  |-  ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> ( ( P pCnt 1 ) - ( P pCnt ( P ^ -u A ) ) ) = A ) | 
						
							| 29 | 19 28 | eqtrd |  |-  ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> ( P pCnt ( 1 / ( P ^ -u A ) ) ) = A ) | 
						
							| 30 | 12 29 | eqtrd |  |-  ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> ( P pCnt ( P ^ A ) ) = A ) | 
						
							| 31 | 2 30 | jaodan |  |-  ( ( P e. Prime /\ ( A e. NN0 \/ ( A e. RR /\ -u A e. NN ) ) ) -> ( P pCnt ( P ^ A ) ) = A ) | 
						
							| 32 | 1 31 | sylan2b |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( P pCnt ( P ^ A ) ) = A ) |