| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elznn0nn |  | 
						
							| 2 |  | pcidlem |  | 
						
							| 3 |  | prmnn |  | 
						
							| 4 | 3 | adantr |  | 
						
							| 5 | 4 | nncnd |  | 
						
							| 6 |  | simprl |  | 
						
							| 7 | 6 | recnd |  | 
						
							| 8 |  | nnnn0 |  | 
						
							| 9 | 8 | ad2antll |  | 
						
							| 10 |  | expneg2 |  | 
						
							| 11 | 5 7 9 10 | syl3anc |  | 
						
							| 12 | 11 | oveq2d |  | 
						
							| 13 |  | simpl |  | 
						
							| 14 |  | 1zzd |  | 
						
							| 15 |  | ax-1ne0 |  | 
						
							| 16 | 15 | a1i |  | 
						
							| 17 | 4 9 | nnexpcld |  | 
						
							| 18 |  | pcdiv |  | 
						
							| 19 | 13 14 16 17 18 | syl121anc |  | 
						
							| 20 |  | pc1 |  | 
						
							| 21 | 20 | adantr |  | 
						
							| 22 |  | pcidlem |  | 
						
							| 23 | 9 22 | syldan |  | 
						
							| 24 | 21 23 | oveq12d |  | 
						
							| 25 |  | df-neg |  | 
						
							| 26 | 7 | negnegd |  | 
						
							| 27 | 25 26 | eqtr3id |  | 
						
							| 28 | 24 27 | eqtrd |  | 
						
							| 29 | 19 28 | eqtrd |  | 
						
							| 30 | 12 29 | eqtrd |  | 
						
							| 31 | 2 30 | jaodan |  | 
						
							| 32 | 1 31 | sylan2b |  |