Metamath Proof Explorer


Theorem pcidlem

Description: The prime count of a prime power. (Contributed by Mario Carneiro, 12-Mar-2014)

Ref Expression
Assertion pcidlem PA0PpCntPA=A

Proof

Step Hyp Ref Expression
1 simpl PA0P
2 prmnn PP
3 1 2 syl PA0P
4 simpr PA0A0
5 3 4 nnexpcld PA0PA
6 1 5 pccld PA0PpCntPA0
7 6 nn0red PA0PpCntPA
8 7 leidd PA0PpCntPAPpCntPA
9 5 nnzd PA0PA
10 pcdvdsb PPAPpCntPA0PpCntPAPpCntPAPPpCntPAPA
11 1 9 6 10 syl3anc PA0PpCntPAPpCntPAPPpCntPAPA
12 8 11 mpbid PA0PPpCntPAPA
13 3 6 nnexpcld PA0PPpCntPA
14 13 nnzd PA0PPpCntPA
15 dvdsle PPpCntPAPAPPpCntPAPAPPpCntPAPA
16 14 5 15 syl2anc PA0PPpCntPAPAPPpCntPAPA
17 12 16 mpd PA0PPpCntPAPA
18 3 nnred PA0P
19 6 nn0zd PA0PpCntPA
20 nn0z A0A
21 20 adantl PA0A
22 prmuz2 PP2
23 eluz2gt1 P21<P
24 1 22 23 3syl PA01<P
25 18 19 21 24 leexp2d PA0PpCntPAAPPpCntPAPA
26 17 25 mpbird PA0PpCntPAA
27 iddvds PAPAPA
28 9 27 syl PA0PAPA
29 pcdvdsb PPAA0APpCntPAPAPA
30 1 9 4 29 syl3anc PA0APpCntPAPAPA
31 28 30 mpbird PA0APpCntPA
32 nn0re A0A
33 32 adantl PA0A
34 7 33 letri3d PA0PpCntPA=APpCntPAAAPpCntPA
35 26 31 34 mpbir2and PA0PpCntPA=A