| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ0 )  →  𝑃  ∈  ℙ ) | 
						
							| 2 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 3 | 1 2 | syl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ0 )  →  𝑃  ∈  ℕ ) | 
						
							| 4 |  | simpr | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ0 )  →  𝐴  ∈  ℕ0 ) | 
						
							| 5 | 3 4 | nnexpcld | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ0 )  →  ( 𝑃 ↑ 𝐴 )  ∈  ℕ ) | 
						
							| 6 | 1 5 | pccld | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ0 )  →  ( 𝑃  pCnt  ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ0 ) | 
						
							| 7 | 6 | nn0red | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ0 )  →  ( 𝑃  pCnt  ( 𝑃 ↑ 𝐴 ) )  ∈  ℝ ) | 
						
							| 8 | 7 | leidd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ0 )  →  ( 𝑃  pCnt  ( 𝑃 ↑ 𝐴 ) )  ≤  ( 𝑃  pCnt  ( 𝑃 ↑ 𝐴 ) ) ) | 
						
							| 9 | 5 | nnzd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ0 )  →  ( 𝑃 ↑ 𝐴 )  ∈  ℤ ) | 
						
							| 10 |  | pcdvdsb | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃 ↑ 𝐴 )  ∈  ℤ  ∧  ( 𝑃  pCnt  ( 𝑃 ↑ 𝐴 ) )  ∈  ℕ0 )  →  ( ( 𝑃  pCnt  ( 𝑃 ↑ 𝐴 ) )  ≤  ( 𝑃  pCnt  ( 𝑃 ↑ 𝐴 ) )  ↔  ( 𝑃 ↑ ( 𝑃  pCnt  ( 𝑃 ↑ 𝐴 ) ) )  ∥  ( 𝑃 ↑ 𝐴 ) ) ) | 
						
							| 11 | 1 9 6 10 | syl3anc | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ0 )  →  ( ( 𝑃  pCnt  ( 𝑃 ↑ 𝐴 ) )  ≤  ( 𝑃  pCnt  ( 𝑃 ↑ 𝐴 ) )  ↔  ( 𝑃 ↑ ( 𝑃  pCnt  ( 𝑃 ↑ 𝐴 ) ) )  ∥  ( 𝑃 ↑ 𝐴 ) ) ) | 
						
							| 12 | 8 11 | mpbid | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ0 )  →  ( 𝑃 ↑ ( 𝑃  pCnt  ( 𝑃 ↑ 𝐴 ) ) )  ∥  ( 𝑃 ↑ 𝐴 ) ) | 
						
							| 13 | 3 6 | nnexpcld | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ0 )  →  ( 𝑃 ↑ ( 𝑃  pCnt  ( 𝑃 ↑ 𝐴 ) ) )  ∈  ℕ ) | 
						
							| 14 | 13 | nnzd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ0 )  →  ( 𝑃 ↑ ( 𝑃  pCnt  ( 𝑃 ↑ 𝐴 ) ) )  ∈  ℤ ) | 
						
							| 15 |  | dvdsle | ⊢ ( ( ( 𝑃 ↑ ( 𝑃  pCnt  ( 𝑃 ↑ 𝐴 ) ) )  ∈  ℤ  ∧  ( 𝑃 ↑ 𝐴 )  ∈  ℕ )  →  ( ( 𝑃 ↑ ( 𝑃  pCnt  ( 𝑃 ↑ 𝐴 ) ) )  ∥  ( 𝑃 ↑ 𝐴 )  →  ( 𝑃 ↑ ( 𝑃  pCnt  ( 𝑃 ↑ 𝐴 ) ) )  ≤  ( 𝑃 ↑ 𝐴 ) ) ) | 
						
							| 16 | 14 5 15 | syl2anc | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ0 )  →  ( ( 𝑃 ↑ ( 𝑃  pCnt  ( 𝑃 ↑ 𝐴 ) ) )  ∥  ( 𝑃 ↑ 𝐴 )  →  ( 𝑃 ↑ ( 𝑃  pCnt  ( 𝑃 ↑ 𝐴 ) ) )  ≤  ( 𝑃 ↑ 𝐴 ) ) ) | 
						
							| 17 | 12 16 | mpd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ0 )  →  ( 𝑃 ↑ ( 𝑃  pCnt  ( 𝑃 ↑ 𝐴 ) ) )  ≤  ( 𝑃 ↑ 𝐴 ) ) | 
						
							| 18 | 3 | nnred | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ0 )  →  𝑃  ∈  ℝ ) | 
						
							| 19 | 6 | nn0zd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ0 )  →  ( 𝑃  pCnt  ( 𝑃 ↑ 𝐴 ) )  ∈  ℤ ) | 
						
							| 20 |  | nn0z | ⊢ ( 𝐴  ∈  ℕ0  →  𝐴  ∈  ℤ ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ0 )  →  𝐴  ∈  ℤ ) | 
						
							| 22 |  | prmuz2 | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 23 |  | eluz2gt1 | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  →  1  <  𝑃 ) | 
						
							| 24 | 1 22 23 | 3syl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ0 )  →  1  <  𝑃 ) | 
						
							| 25 | 18 19 21 24 | leexp2d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ0 )  →  ( ( 𝑃  pCnt  ( 𝑃 ↑ 𝐴 ) )  ≤  𝐴  ↔  ( 𝑃 ↑ ( 𝑃  pCnt  ( 𝑃 ↑ 𝐴 ) ) )  ≤  ( 𝑃 ↑ 𝐴 ) ) ) | 
						
							| 26 | 17 25 | mpbird | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ0 )  →  ( 𝑃  pCnt  ( 𝑃 ↑ 𝐴 ) )  ≤  𝐴 ) | 
						
							| 27 |  | iddvds | ⊢ ( ( 𝑃 ↑ 𝐴 )  ∈  ℤ  →  ( 𝑃 ↑ 𝐴 )  ∥  ( 𝑃 ↑ 𝐴 ) ) | 
						
							| 28 | 9 27 | syl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ0 )  →  ( 𝑃 ↑ 𝐴 )  ∥  ( 𝑃 ↑ 𝐴 ) ) | 
						
							| 29 |  | pcdvdsb | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃 ↑ 𝐴 )  ∈  ℤ  ∧  𝐴  ∈  ℕ0 )  →  ( 𝐴  ≤  ( 𝑃  pCnt  ( 𝑃 ↑ 𝐴 ) )  ↔  ( 𝑃 ↑ 𝐴 )  ∥  ( 𝑃 ↑ 𝐴 ) ) ) | 
						
							| 30 | 1 9 4 29 | syl3anc | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ0 )  →  ( 𝐴  ≤  ( 𝑃  pCnt  ( 𝑃 ↑ 𝐴 ) )  ↔  ( 𝑃 ↑ 𝐴 )  ∥  ( 𝑃 ↑ 𝐴 ) ) ) | 
						
							| 31 | 28 30 | mpbird | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ0 )  →  𝐴  ≤  ( 𝑃  pCnt  ( 𝑃 ↑ 𝐴 ) ) ) | 
						
							| 32 |  | nn0re | ⊢ ( 𝐴  ∈  ℕ0  →  𝐴  ∈  ℝ ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ0 )  →  𝐴  ∈  ℝ ) | 
						
							| 34 | 7 33 | letri3d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ0 )  →  ( ( 𝑃  pCnt  ( 𝑃 ↑ 𝐴 ) )  =  𝐴  ↔  ( ( 𝑃  pCnt  ( 𝑃 ↑ 𝐴 ) )  ≤  𝐴  ∧  𝐴  ≤  ( 𝑃  pCnt  ( 𝑃 ↑ 𝐴 ) ) ) ) ) | 
						
							| 35 | 26 31 34 | mpbir2and | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ0 )  →  ( 𝑃  pCnt  ( 𝑃 ↑ 𝐴 ) )  =  𝐴 ) |