Metamath Proof Explorer


Theorem pc1

Description: Value of the prime count function at 1. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Assertion pc1 PPpCnt1=0

Proof

Step Hyp Ref Expression
1 1z 1
2 ax-1ne0 10
3 eqid supn0|Pn1<=supn0|Pn1<
4 3 pczpre P110PpCnt1=supn0|Pn1<
5 1 2 4 mpanr12 PPpCnt1=supn0|Pn1<
6 prmuz2 PP2
7 eqid 1=1
8 eqid n0|Pn1=n0|Pn1
9 8 3 pcpre1 P21=1supn0|Pn1<=0
10 6 7 9 sylancl Psupn0|Pn1<=0
11 5 10 eqtrd PPpCnt1=0