| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 2 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 3 |  | eqid | ⊢ sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  1 } ,  ℝ ,   <  )  =  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  1 } ,  ℝ ,   <  ) | 
						
							| 4 | 3 | pczpre | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 1  ∈  ℤ  ∧  1  ≠  0 ) )  →  ( 𝑃  pCnt  1 )  =  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  1 } ,  ℝ ,   <  ) ) | 
						
							| 5 | 1 2 4 | mpanr12 | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  pCnt  1 )  =  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  1 } ,  ℝ ,   <  ) ) | 
						
							| 6 |  | prmuz2 | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 7 |  | eqid | ⊢ 1  =  1 | 
						
							| 8 |  | eqid | ⊢ { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  1 }  =  { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  1 } | 
						
							| 9 | 8 3 | pcpre1 | ⊢ ( ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  ∧  1  =  1 )  →  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  1 } ,  ℝ ,   <  )  =  0 ) | 
						
							| 10 | 6 7 9 | sylancl | ⊢ ( 𝑃  ∈  ℙ  →  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑃 ↑ 𝑛 )  ∥  1 } ,  ℝ ,   <  )  =  0 ) | 
						
							| 11 | 5 10 | eqtrd | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  pCnt  1 )  =  0 ) |