| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1z |
⊢ 1 ∈ ℤ |
| 2 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 3 |
|
eqid |
⊢ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 1 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 1 } , ℝ , < ) |
| 4 |
3
|
pczpre |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 1 ∈ ℤ ∧ 1 ≠ 0 ) ) → ( 𝑃 pCnt 1 ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 1 } , ℝ , < ) ) |
| 5 |
1 2 4
|
mpanr12 |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 1 ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 1 } , ℝ , < ) ) |
| 6 |
|
prmuz2 |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
| 7 |
|
eqid |
⊢ 1 = 1 |
| 8 |
|
eqid |
⊢ { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 1 } = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 1 } |
| 9 |
8 3
|
pcpre1 |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 1 = 1 ) → sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 1 } , ℝ , < ) = 0 ) |
| 10 |
6 7 9
|
sylancl |
⊢ ( 𝑃 ∈ ℙ → sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 1 } , ℝ , < ) = 0 ) |
| 11 |
5 10
|
eqtrd |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 1 ) = 0 ) |