| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pgpfi.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 2 |
|
eqid |
⊢ ( od ‘ 𝐺 ) = ( od ‘ 𝐺 ) |
| 3 |
1 2
|
ispgp |
⊢ ( 𝑃 pGrp 𝐺 ↔ ( 𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) |
| 4 |
|
simprl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → 𝑃 ∈ ℙ ) |
| 5 |
1
|
grpbn0 |
⊢ ( 𝐺 ∈ Grp → 𝑋 ≠ ∅ ) |
| 6 |
5
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → 𝑋 ≠ ∅ ) |
| 7 |
|
hashnncl |
⊢ ( 𝑋 ∈ Fin → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ↔ 𝑋 ≠ ∅ ) ) |
| 8 |
7
|
ad2antlr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ↔ 𝑋 ≠ ∅ ) ) |
| 9 |
6 8
|
mpbird |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( ♯ ‘ 𝑋 ) ∈ ℕ ) |
| 10 |
4 9
|
pccld |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ℕ0 ) |
| 11 |
10
|
nn0red |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ℝ ) |
| 12 |
11
|
leidd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ≤ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) |
| 13 |
10
|
nn0zd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ℤ ) |
| 14 |
|
pcid |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ℤ ) → ( 𝑃 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) = ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) |
| 15 |
4 13 14
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( 𝑃 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) = ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) |
| 16 |
12 15
|
breqtrrd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ≤ ( 𝑃 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
| 17 |
16
|
ad2antrr |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 = 𝑃 ) → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ≤ ( 𝑃 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
| 18 |
|
simpr |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 = 𝑃 ) → 𝑝 = 𝑃 ) |
| 19 |
18
|
oveq1d |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 = 𝑃 ) → ( 𝑝 pCnt ( ♯ ‘ 𝑋 ) ) = ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) |
| 20 |
18
|
oveq1d |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 = 𝑃 ) → ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) = ( 𝑃 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
| 21 |
17 19 20
|
3brtr4d |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 = 𝑃 ) → ( 𝑝 pCnt ( ♯ ‘ 𝑋 ) ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
| 22 |
|
simp-4l |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) → 𝐺 ∈ Grp ) |
| 23 |
|
simplr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → 𝑋 ∈ Fin ) |
| 24 |
23
|
ad2antrr |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) → 𝑋 ∈ Fin ) |
| 25 |
|
simplr |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) → 𝑝 ∈ ℙ ) |
| 26 |
|
simpr |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) → 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) |
| 27 |
1 2
|
odcau |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) → ∃ 𝑔 ∈ 𝑋 ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) |
| 28 |
22 24 25 26 27
|
syl31anc |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) → ∃ 𝑔 ∈ 𝑋 ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) |
| 29 |
25
|
adantr |
⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → 𝑝 ∈ ℙ ) |
| 30 |
|
prmz |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) |
| 31 |
|
iddvds |
⊢ ( 𝑝 ∈ ℤ → 𝑝 ∥ 𝑝 ) |
| 32 |
29 30 31
|
3syl |
⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → 𝑝 ∥ 𝑝 ) |
| 33 |
|
simprr |
⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) |
| 34 |
32 33
|
breqtrrd |
⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → 𝑝 ∥ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ) |
| 35 |
|
simplrr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) |
| 36 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑔 → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ↔ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = ( 𝑃 ↑ 𝑚 ) ) ) |
| 37 |
36
|
rexbidv |
⊢ ( 𝑥 = 𝑔 → ( ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ↔ ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = ( 𝑃 ↑ 𝑚 ) ) ) |
| 38 |
37
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ∧ 𝑔 ∈ 𝑋 ) → ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = ( 𝑃 ↑ 𝑚 ) ) |
| 39 |
35 38
|
sylan |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑔 ∈ 𝑋 ) → ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = ( 𝑃 ↑ 𝑚 ) ) |
| 40 |
39
|
ad2ant2r |
⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = ( 𝑃 ↑ 𝑚 ) ) |
| 41 |
4
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → 𝑃 ∈ ℙ ) |
| 42 |
|
prmnn |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) |
| 43 |
29 42
|
syl |
⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → 𝑝 ∈ ℕ ) |
| 44 |
33 43
|
eqeltrd |
⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ∈ ℕ ) |
| 45 |
|
pcprmpw |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ∈ ℕ ) → ( ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = ( 𝑃 ↑ 𝑚 ) ↔ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ) ) ) ) |
| 46 |
41 44 45
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → ( ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = ( 𝑃 ↑ 𝑚 ) ↔ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ) ) ) ) |
| 47 |
40 46
|
mpbid |
⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ) ) ) |
| 48 |
34 47
|
breqtrd |
⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → 𝑝 ∥ ( 𝑃 ↑ ( 𝑃 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ) ) ) |
| 49 |
41 44
|
pccld |
⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → ( 𝑃 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ) ∈ ℕ0 ) |
| 50 |
|
prmdvdsexpr |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ ( 𝑃 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ) ∈ ℕ0 ) → ( 𝑝 ∥ ( 𝑃 ↑ ( 𝑃 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ) ) → 𝑝 = 𝑃 ) ) |
| 51 |
29 41 49 50
|
syl3anc |
⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → ( 𝑝 ∥ ( 𝑃 ↑ ( 𝑃 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑔 ) ) ) → 𝑝 = 𝑃 ) ) |
| 52 |
48 51
|
mpd |
⊢ ( ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ∧ ( 𝑔 ∈ 𝑋 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑔 ) = 𝑝 ) ) → 𝑝 = 𝑃 ) |
| 53 |
28 52
|
rexlimddv |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) → 𝑝 = 𝑃 ) |
| 54 |
53
|
ex |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( ♯ ‘ 𝑋 ) → 𝑝 = 𝑃 ) ) |
| 55 |
54
|
necon3ad |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ≠ 𝑃 → ¬ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ) |
| 56 |
55
|
imp |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → ¬ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) |
| 57 |
|
simplr |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → 𝑝 ∈ ℙ ) |
| 58 |
9
|
ad2antrr |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → ( ♯ ‘ 𝑋 ) ∈ ℕ ) |
| 59 |
|
pceq0 |
⊢ ( ( 𝑝 ∈ ℙ ∧ ( ♯ ‘ 𝑋 ) ∈ ℕ ) → ( ( 𝑝 pCnt ( ♯ ‘ 𝑋 ) ) = 0 ↔ ¬ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ) |
| 60 |
57 58 59
|
syl2anc |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → ( ( 𝑝 pCnt ( ♯ ‘ 𝑋 ) ) = 0 ↔ ¬ 𝑝 ∥ ( ♯ ‘ 𝑋 ) ) ) |
| 61 |
56 60
|
mpbird |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → ( 𝑝 pCnt ( ♯ ‘ 𝑋 ) ) = 0 ) |
| 62 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
| 63 |
62
|
ad2antrl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → 𝑃 ∈ ℕ ) |
| 64 |
63 10
|
nnexpcld |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ∈ ℕ ) |
| 65 |
64
|
ad2antrr |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ∈ ℕ ) |
| 66 |
57 65
|
pccld |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ∈ ℕ0 ) |
| 67 |
66
|
nn0ge0d |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → 0 ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
| 68 |
61 67
|
eqbrtrd |
⊢ ( ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ≠ 𝑃 ) → ( 𝑝 pCnt ( ♯ ‘ 𝑋 ) ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
| 69 |
21 68
|
pm2.61dane |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt ( ♯ ‘ 𝑋 ) ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
| 70 |
69
|
ralrimiva |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ♯ ‘ 𝑋 ) ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
| 71 |
|
hashcl |
⊢ ( 𝑋 ∈ Fin → ( ♯ ‘ 𝑋 ) ∈ ℕ0 ) |
| 72 |
71
|
ad2antlr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( ♯ ‘ 𝑋 ) ∈ ℕ0 ) |
| 73 |
72
|
nn0zd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( ♯ ‘ 𝑋 ) ∈ ℤ ) |
| 74 |
64
|
nnzd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ∈ ℤ ) |
| 75 |
|
pc2dvds |
⊢ ( ( ( ♯ ‘ 𝑋 ) ∈ ℤ ∧ ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ∈ ℤ ) → ( ( ♯ ‘ 𝑋 ) ∥ ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ♯ ‘ 𝑋 ) ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ) |
| 76 |
73 74 75
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( ( ♯ ‘ 𝑋 ) ∥ ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ♯ ‘ 𝑋 ) ) ≤ ( 𝑝 pCnt ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ) |
| 77 |
70 76
|
mpbird |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( ♯ ‘ 𝑋 ) ∥ ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) |
| 78 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) → ( 𝑃 ↑ 𝑛 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) |
| 79 |
78
|
breq2d |
⊢ ( 𝑛 = ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) → ( ( ♯ ‘ 𝑋 ) ∥ ( 𝑃 ↑ 𝑛 ) ↔ ( ♯ ‘ 𝑋 ) ∥ ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
| 80 |
79
|
rspcev |
⊢ ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑋 ) ∥ ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) → ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) ∥ ( 𝑃 ↑ 𝑛 ) ) |
| 81 |
10 77 80
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) ∥ ( 𝑃 ↑ 𝑛 ) ) |
| 82 |
|
pcprmpw2 |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ♯ ‘ 𝑋 ) ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) ∥ ( 𝑃 ↑ 𝑛 ) ↔ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
| 83 |
|
pcprmpw |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ♯ ‘ 𝑋 ) ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ↔ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
| 84 |
82 83
|
bitr4d |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ♯ ‘ 𝑋 ) ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) ∥ ( 𝑃 ↑ 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ) ) |
| 85 |
4 9 84
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) ∥ ( 𝑃 ↑ 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ) ) |
| 86 |
81 85
|
mpbid |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ) |
| 87 |
4 86
|
jca |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( 𝑃 ∈ ℙ ∧ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ) ) |
| 88 |
87
|
3adantr2 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ ( 𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) ) → ( 𝑃 ∈ ℙ ∧ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ) ) |
| 89 |
88
|
ex |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) → ( ( 𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑚 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑚 ) ) → ( 𝑃 ∈ ℙ ∧ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ) ) ) |
| 90 |
3 89
|
biimtrid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) → ( 𝑃 pGrp 𝐺 → ( 𝑃 ∈ ℙ ∧ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ) ) ) |
| 91 |
1
|
pgpfi1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) → 𝑃 pGrp 𝐺 ) ) |
| 92 |
91
|
3expia |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ) → ( 𝑛 ∈ ℕ0 → ( ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) → 𝑃 pGrp 𝐺 ) ) ) |
| 93 |
92
|
rexlimdv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ) → ( ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) → 𝑃 pGrp 𝐺 ) ) |
| 94 |
93
|
expimpd |
⊢ ( 𝐺 ∈ Grp → ( ( 𝑃 ∈ ℙ ∧ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ) → 𝑃 pGrp 𝐺 ) ) |
| 95 |
94
|
adantr |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) → ( ( 𝑃 ∈ ℙ ∧ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ) → 𝑃 pGrp 𝐺 ) ) |
| 96 |
90 95
|
impbid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) → ( 𝑃 pGrp 𝐺 ↔ ( 𝑃 ∈ ℙ ∧ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑛 ) ) ) ) |