Metamath Proof Explorer


Theorem pgpfi

Description: The converse to pgpfi1 . A finite group is a P -group iff it has size some power of P . (Contributed by Mario Carneiro, 16-Jan-2015)

Ref Expression
Hypothesis pgpfi.1 X=BaseG
Assertion pgpfi GGrpXFinPpGrpGPn0X=Pn

Proof

Step Hyp Ref Expression
1 pgpfi.1 X=BaseG
2 eqid odG=odG
3 1 2 ispgp PpGrpGPGGrpxXm0odGx=Pm
4 simprl GGrpXFinPxXm0odGx=PmP
5 1 grpbn0 GGrpX
6 5 ad2antrr GGrpXFinPxXm0odGx=PmX
7 hashnncl XFinXX
8 7 ad2antlr GGrpXFinPxXm0odGx=PmXX
9 6 8 mpbird GGrpXFinPxXm0odGx=PmX
10 4 9 pccld GGrpXFinPxXm0odGx=PmPpCntX0
11 10 nn0red GGrpXFinPxXm0odGx=PmPpCntX
12 11 leidd GGrpXFinPxXm0odGx=PmPpCntXPpCntX
13 10 nn0zd GGrpXFinPxXm0odGx=PmPpCntX
14 pcid PPpCntXPpCntPPpCntX=PpCntX
15 4 13 14 syl2anc GGrpXFinPxXm0odGx=PmPpCntPPpCntX=PpCntX
16 12 15 breqtrrd GGrpXFinPxXm0odGx=PmPpCntXPpCntPPpCntX
17 16 ad2antrr GGrpXFinPxXm0odGx=Pmpp=PPpCntXPpCntPPpCntX
18 simpr GGrpXFinPxXm0odGx=Pmpp=Pp=P
19 18 oveq1d GGrpXFinPxXm0odGx=Pmpp=PppCntX=PpCntX
20 18 oveq1d GGrpXFinPxXm0odGx=Pmpp=PppCntPPpCntX=PpCntPPpCntX
21 17 19 20 3brtr4d GGrpXFinPxXm0odGx=Pmpp=PppCntXppCntPPpCntX
22 simp-4l GGrpXFinPxXm0odGx=PmppXGGrp
23 simplr GGrpXFinPxXm0odGx=PmXFin
24 23 ad2antrr GGrpXFinPxXm0odGx=PmppXXFin
25 simplr GGrpXFinPxXm0odGx=PmppXp
26 simpr GGrpXFinPxXm0odGx=PmppXpX
27 1 2 odcau GGrpXFinppXgXodGg=p
28 22 24 25 26 27 syl31anc GGrpXFinPxXm0odGx=PmppXgXodGg=p
29 25 adantr GGrpXFinPxXm0odGx=PmppXgXodGg=pp
30 prmz pp
31 iddvds ppp
32 29 30 31 3syl GGrpXFinPxXm0odGx=PmppXgXodGg=ppp
33 simprr GGrpXFinPxXm0odGx=PmppXgXodGg=podGg=p
34 32 33 breqtrrd GGrpXFinPxXm0odGx=PmppXgXodGg=ppodGg
35 simplrr GGrpXFinPxXm0odGx=PmpxXm0odGx=Pm
36 fveqeq2 x=godGx=PmodGg=Pm
37 36 rexbidv x=gm0odGx=Pmm0odGg=Pm
38 37 rspccva xXm0odGx=PmgXm0odGg=Pm
39 35 38 sylan GGrpXFinPxXm0odGx=PmpgXm0odGg=Pm
40 39 ad2ant2r GGrpXFinPxXm0odGx=PmppXgXodGg=pm0odGg=Pm
41 4 ad3antrrr GGrpXFinPxXm0odGx=PmppXgXodGg=pP
42 prmnn pp
43 29 42 syl GGrpXFinPxXm0odGx=PmppXgXodGg=pp
44 33 43 eqeltrd GGrpXFinPxXm0odGx=PmppXgXodGg=podGg
45 pcprmpw PodGgm0odGg=PmodGg=PPpCntodGg
46 41 44 45 syl2anc GGrpXFinPxXm0odGx=PmppXgXodGg=pm0odGg=PmodGg=PPpCntodGg
47 40 46 mpbid GGrpXFinPxXm0odGx=PmppXgXodGg=podGg=PPpCntodGg
48 34 47 breqtrd GGrpXFinPxXm0odGx=PmppXgXodGg=ppPPpCntodGg
49 41 44 pccld GGrpXFinPxXm0odGx=PmppXgXodGg=pPpCntodGg0
50 prmdvdsexpr pPPpCntodGg0pPPpCntodGgp=P
51 29 41 49 50 syl3anc GGrpXFinPxXm0odGx=PmppXgXodGg=ppPPpCntodGgp=P
52 48 51 mpd GGrpXFinPxXm0odGx=PmppXgXodGg=pp=P
53 28 52 rexlimddv GGrpXFinPxXm0odGx=PmppXp=P
54 53 ex GGrpXFinPxXm0odGx=PmppXp=P
55 54 necon3ad GGrpXFinPxXm0odGx=PmppP¬pX
56 55 imp GGrpXFinPxXm0odGx=PmppP¬pX
57 simplr GGrpXFinPxXm0odGx=PmppPp
58 9 ad2antrr GGrpXFinPxXm0odGx=PmppPX
59 pceq0 pXppCntX=0¬pX
60 57 58 59 syl2anc GGrpXFinPxXm0odGx=PmppPppCntX=0¬pX
61 56 60 mpbird GGrpXFinPxXm0odGx=PmppPppCntX=0
62 prmnn PP
63 62 ad2antrl GGrpXFinPxXm0odGx=PmP
64 63 10 nnexpcld GGrpXFinPxXm0odGx=PmPPpCntX
65 64 ad2antrr GGrpXFinPxXm0odGx=PmppPPPpCntX
66 57 65 pccld GGrpXFinPxXm0odGx=PmppPppCntPPpCntX0
67 66 nn0ge0d GGrpXFinPxXm0odGx=PmppP0ppCntPPpCntX
68 61 67 eqbrtrd GGrpXFinPxXm0odGx=PmppPppCntXppCntPPpCntX
69 21 68 pm2.61dane GGrpXFinPxXm0odGx=PmpppCntXppCntPPpCntX
70 69 ralrimiva GGrpXFinPxXm0odGx=PmpppCntXppCntPPpCntX
71 hashcl XFinX0
72 71 ad2antlr GGrpXFinPxXm0odGx=PmX0
73 72 nn0zd GGrpXFinPxXm0odGx=PmX
74 64 nnzd GGrpXFinPxXm0odGx=PmPPpCntX
75 pc2dvds XPPpCntXXPPpCntXpppCntXppCntPPpCntX
76 73 74 75 syl2anc GGrpXFinPxXm0odGx=PmXPPpCntXpppCntXppCntPPpCntX
77 70 76 mpbird GGrpXFinPxXm0odGx=PmXPPpCntX
78 oveq2 n=PpCntXPn=PPpCntX
79 78 breq2d n=PpCntXXPnXPPpCntX
80 79 rspcev PpCntX0XPPpCntXn0XPn
81 10 77 80 syl2anc GGrpXFinPxXm0odGx=Pmn0XPn
82 pcprmpw2 PXn0XPnX=PPpCntX
83 pcprmpw PXn0X=PnX=PPpCntX
84 82 83 bitr4d PXn0XPnn0X=Pn
85 4 9 84 syl2anc GGrpXFinPxXm0odGx=Pmn0XPnn0X=Pn
86 81 85 mpbid GGrpXFinPxXm0odGx=Pmn0X=Pn
87 4 86 jca GGrpXFinPxXm0odGx=PmPn0X=Pn
88 87 3adantr2 GGrpXFinPGGrpxXm0odGx=PmPn0X=Pn
89 88 ex GGrpXFinPGGrpxXm0odGx=PmPn0X=Pn
90 3 89 biimtrid GGrpXFinPpGrpGPn0X=Pn
91 1 pgpfi1 GGrpPn0X=PnPpGrpG
92 91 3expia GGrpPn0X=PnPpGrpG
93 92 rexlimdv GGrpPn0X=PnPpGrpG
94 93 expimpd GGrpPn0X=PnPpGrpG
95 94 adantr GGrpXFinPn0X=PnPpGrpG
96 90 95 impbid GGrpXFinPpGrpGPn0X=Pn