Metamath Proof Explorer


Theorem pceq0

Description: There are zero powers of a prime P in N iff P does not divide N . (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Assertion pceq0 PNPpCntN=0¬PN

Proof

Step Hyp Ref Expression
1 pcelnn PNPpCntNPN
2 pccl PNPpCntN0
3 nnne0 PpCntNPpCntN0
4 elnn0 PpCntN0PpCntNPpCntN=0
5 4 biimpi PpCntN0PpCntNPpCntN=0
6 5 ord PpCntN0¬PpCntNPpCntN=0
7 6 necon1ad PpCntN0PpCntN0PpCntN
8 3 7 impbid2 PpCntN0PpCntNPpCntN0
9 2 8 syl PNPpCntNPpCntN0
10 1 9 bitr3d PNPNPpCntN0
11 10 necon2bbid PNPpCntN=0¬PN