Metamath Proof Explorer


Theorem pcprmpw

Description: Self-referential expression for a prime power. (Contributed by Mario Carneiro, 16-Jan-2015)

Ref Expression
Assertion pcprmpw PAn0A=PnA=PPpCntA

Proof

Step Hyp Ref Expression
1 prmz PP
2 1 adantr PAP
3 zexpcl Pn0Pn
4 2 3 sylan PAn0Pn
5 iddvds PnPnPn
6 4 5 syl PAn0PnPn
7 breq1 A=PnAPnPnPn
8 6 7 syl5ibrcom PAn0A=PnAPn
9 8 reximdva PAn0A=Pnn0APn
10 pcprmpw2 PAn0APnA=PPpCntA
11 9 10 sylibd PAn0A=PnA=PPpCntA
12 pccl PAPpCntA0
13 oveq2 n=PpCntAPn=PPpCntA
14 13 rspceeqv PpCntA0A=PPpCntAn0A=Pn
15 14 ex PpCntA0A=PPpCntAn0A=Pn
16 12 15 syl PAA=PPpCntAn0A=Pn
17 11 16 impbid PAn0A=PnA=PPpCntA