Metamath Proof Explorer


Theorem dvdsprmpweq

Description: If a positive integer divides a prime power, it is a prime power. (Contributed by AV, 25-Jul-2021)

Ref Expression
Assertion dvdsprmpweq PAN0APNn0A=Pn

Proof

Step Hyp Ref Expression
1 simp1 PAN0P
2 simp2 PAN0A
3 1 2 pccld PAN0PpCntA0
4 3 adantr PAN0APNPpCntA0
5 oveq2 n=PpCntAPn=PPpCntA
6 5 eqeq2d n=PpCntAA=PnA=PPpCntA
7 6 adantl PAN0APNn=PpCntAA=PnA=PPpCntA
8 simpl3 PAN0APNN0
9 oveq2 n=NPn=PN
10 9 breq2d n=NAPnAPN
11 10 adantl PAN0APNn=NAPnAPN
12 simpr PAN0APNAPN
13 8 11 12 rspcedvd PAN0APNn0APn
14 pcprmpw2 PAn0APnA=PPpCntA
15 14 3adant3 PAN0n0APnA=PPpCntA
16 15 adantr PAN0APNn0APnA=PPpCntA
17 13 16 mpbid PAN0APNA=PPpCntA
18 4 7 17 rspcedvd PAN0APNn0A=Pn
19 18 ex PAN0APNn0A=Pn