| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> P e. Prime ) |
| 2 |
|
simp2 |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> A e. NN ) |
| 3 |
1 2
|
pccld |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> ( P pCnt A ) e. NN0 ) |
| 4 |
3
|
adantr |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> ( P pCnt A ) e. NN0 ) |
| 5 |
|
oveq2 |
|- ( n = ( P pCnt A ) -> ( P ^ n ) = ( P ^ ( P pCnt A ) ) ) |
| 6 |
5
|
eqeq2d |
|- ( n = ( P pCnt A ) -> ( A = ( P ^ n ) <-> A = ( P ^ ( P pCnt A ) ) ) ) |
| 7 |
6
|
adantl |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n = ( P pCnt A ) ) -> ( A = ( P ^ n ) <-> A = ( P ^ ( P pCnt A ) ) ) ) |
| 8 |
|
simpl3 |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> N e. NN0 ) |
| 9 |
|
oveq2 |
|- ( n = N -> ( P ^ n ) = ( P ^ N ) ) |
| 10 |
9
|
breq2d |
|- ( n = N -> ( A || ( P ^ n ) <-> A || ( P ^ N ) ) ) |
| 11 |
10
|
adantl |
|- ( ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) /\ n = N ) -> ( A || ( P ^ n ) <-> A || ( P ^ N ) ) ) |
| 12 |
|
simpr |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> A || ( P ^ N ) ) |
| 13 |
8 11 12
|
rspcedvd |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> E. n e. NN0 A || ( P ^ n ) ) |
| 14 |
|
pcprmpw2 |
|- ( ( P e. Prime /\ A e. NN ) -> ( E. n e. NN0 A || ( P ^ n ) <-> A = ( P ^ ( P pCnt A ) ) ) ) |
| 15 |
14
|
3adant3 |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> ( E. n e. NN0 A || ( P ^ n ) <-> A = ( P ^ ( P pCnt A ) ) ) ) |
| 16 |
15
|
adantr |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> ( E. n e. NN0 A || ( P ^ n ) <-> A = ( P ^ ( P pCnt A ) ) ) ) |
| 17 |
13 16
|
mpbid |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> A = ( P ^ ( P pCnt A ) ) ) |
| 18 |
4 7 17
|
rspcedvd |
|- ( ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) /\ A || ( P ^ N ) ) -> E. n e. NN0 A = ( P ^ n ) ) |
| 19 |
18
|
ex |
|- ( ( P e. Prime /\ A e. NN /\ N e. NN0 ) -> ( A || ( P ^ N ) -> E. n e. NN0 A = ( P ^ n ) ) ) |