Metamath Proof Explorer


Theorem hashnncl

Description: Positive natural closure of the hash function. (Contributed by Mario Carneiro, 16-Jan-2015)

Ref Expression
Assertion hashnncl AFinAA

Proof

Step Hyp Ref Expression
1 nnne0 AA0
2 hashcl AFinA0
3 elnn0 A0AA=0
4 2 3 sylib AFinAA=0
5 4 ord AFin¬AA=0
6 5 necon1ad AFinA0A
7 1 6 impbid2 AFinAA0
8 hasheq0 AFinA=0A=
9 8 necon3bid AFinA0A
10 7 9 bitrd AFinAA