Metamath Proof Explorer


Theorem ispgp

Description: A group is a P -group if every element has some power of P as its order. (Contributed by Mario Carneiro, 15-Jan-2015)

Ref Expression
Hypotheses ispgp.1 X = Base G
ispgp.2 O = od G
Assertion ispgp P pGrp G P G Grp x X n 0 O x = P n

Proof

Step Hyp Ref Expression
1 ispgp.1 X = Base G
2 ispgp.2 O = od G
3 simpr p = P g = G g = G
4 3 fveq2d p = P g = G Base g = Base G
5 4 1 syl6eqr p = P g = G Base g = X
6 3 fveq2d p = P g = G od g = od G
7 6 2 syl6eqr p = P g = G od g = O
8 7 fveq1d p = P g = G od g x = O x
9 simpl p = P g = G p = P
10 9 oveq1d p = P g = G p n = P n
11 8 10 eqeq12d p = P g = G od g x = p n O x = P n
12 11 rexbidv p = P g = G n 0 od g x = p n n 0 O x = P n
13 5 12 raleqbidv p = P g = G x Base g n 0 od g x = p n x X n 0 O x = P n
14 df-pgp pGrp = p g | p g Grp x Base g n 0 od g x = p n
15 13 14 brab2a P pGrp G P G Grp x X n 0 O x = P n
16 df-3an P G Grp x X n 0 O x = P n P G Grp x X n 0 O x = P n
17 15 16 bitr4i P pGrp G P G Grp x X n 0 O x = P n