| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ispgp.1 |
|- X = ( Base ` G ) |
| 2 |
|
ispgp.2 |
|- O = ( od ` G ) |
| 3 |
|
simpr |
|- ( ( p = P /\ g = G ) -> g = G ) |
| 4 |
3
|
fveq2d |
|- ( ( p = P /\ g = G ) -> ( Base ` g ) = ( Base ` G ) ) |
| 5 |
4 1
|
eqtr4di |
|- ( ( p = P /\ g = G ) -> ( Base ` g ) = X ) |
| 6 |
3
|
fveq2d |
|- ( ( p = P /\ g = G ) -> ( od ` g ) = ( od ` G ) ) |
| 7 |
6 2
|
eqtr4di |
|- ( ( p = P /\ g = G ) -> ( od ` g ) = O ) |
| 8 |
7
|
fveq1d |
|- ( ( p = P /\ g = G ) -> ( ( od ` g ) ` x ) = ( O ` x ) ) |
| 9 |
|
simpl |
|- ( ( p = P /\ g = G ) -> p = P ) |
| 10 |
9
|
oveq1d |
|- ( ( p = P /\ g = G ) -> ( p ^ n ) = ( P ^ n ) ) |
| 11 |
8 10
|
eqeq12d |
|- ( ( p = P /\ g = G ) -> ( ( ( od ` g ) ` x ) = ( p ^ n ) <-> ( O ` x ) = ( P ^ n ) ) ) |
| 12 |
11
|
rexbidv |
|- ( ( p = P /\ g = G ) -> ( E. n e. NN0 ( ( od ` g ) ` x ) = ( p ^ n ) <-> E. n e. NN0 ( O ` x ) = ( P ^ n ) ) ) |
| 13 |
5 12
|
raleqbidv |
|- ( ( p = P /\ g = G ) -> ( A. x e. ( Base ` g ) E. n e. NN0 ( ( od ` g ) ` x ) = ( p ^ n ) <-> A. x e. X E. n e. NN0 ( O ` x ) = ( P ^ n ) ) ) |
| 14 |
|
df-pgp |
|- pGrp = { <. p , g >. | ( ( p e. Prime /\ g e. Grp ) /\ A. x e. ( Base ` g ) E. n e. NN0 ( ( od ` g ) ` x ) = ( p ^ n ) ) } |
| 15 |
13 14
|
brab2a |
|- ( P pGrp G <-> ( ( P e. Prime /\ G e. Grp ) /\ A. x e. X E. n e. NN0 ( O ` x ) = ( P ^ n ) ) ) |
| 16 |
|
df-3an |
|- ( ( P e. Prime /\ G e. Grp /\ A. x e. X E. n e. NN0 ( O ` x ) = ( P ^ n ) ) <-> ( ( P e. Prime /\ G e. Grp ) /\ A. x e. X E. n e. NN0 ( O ` x ) = ( P ^ n ) ) ) |
| 17 |
15 16
|
bitr4i |
|- ( P pGrp G <-> ( P e. Prime /\ G e. Grp /\ A. x e. X E. n e. NN0 ( O ` x ) = ( P ^ n ) ) ) |