| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pgpfi1.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 2 |
|
simpl2 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) → 𝑃 ∈ ℙ ) |
| 3 |
|
simpl1 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) → 𝐺 ∈ Grp ) |
| 4 |
|
simpll3 |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝑁 ∈ ℕ0 ) |
| 5 |
3
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝐺 ∈ Grp ) |
| 6 |
|
simplr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) |
| 7 |
2
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝑃 ∈ ℙ ) |
| 8 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
| 9 |
7 8
|
syl |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝑃 ∈ ℕ ) |
| 10 |
9 4
|
nnexpcld |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑃 ↑ 𝑁 ) ∈ ℕ ) |
| 11 |
10
|
nnnn0d |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑃 ↑ 𝑁 ) ∈ ℕ0 ) |
| 12 |
6 11
|
eqeltrd |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ♯ ‘ 𝑋 ) ∈ ℕ0 ) |
| 13 |
1
|
fvexi |
⊢ 𝑋 ∈ V |
| 14 |
|
hashclb |
⊢ ( 𝑋 ∈ V → ( 𝑋 ∈ Fin ↔ ( ♯ ‘ 𝑋 ) ∈ ℕ0 ) ) |
| 15 |
13 14
|
ax-mp |
⊢ ( 𝑋 ∈ Fin ↔ ( ♯ ‘ 𝑋 ) ∈ ℕ0 ) |
| 16 |
12 15
|
sylibr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝑋 ∈ Fin ) |
| 17 |
|
simpr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
| 18 |
|
eqid |
⊢ ( od ‘ 𝐺 ) = ( od ‘ 𝐺 ) |
| 19 |
1 18
|
oddvds2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( ♯ ‘ 𝑋 ) ) |
| 20 |
5 16 17 19
|
syl3anc |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( ♯ ‘ 𝑋 ) ) |
| 21 |
20 6
|
breqtrd |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( 𝑃 ↑ 𝑁 ) ) |
| 22 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( 𝑃 ↑ 𝑛 ) = ( 𝑃 ↑ 𝑁 ) ) |
| 23 |
22
|
breq2d |
⊢ ( 𝑛 = 𝑁 → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( 𝑃 ↑ 𝑛 ) ↔ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( 𝑃 ↑ 𝑁 ) ) ) |
| 24 |
23
|
rspcev |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( 𝑃 ↑ 𝑁 ) ) → ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( 𝑃 ↑ 𝑛 ) ) |
| 25 |
4 21 24
|
syl2anc |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( 𝑃 ↑ 𝑛 ) ) |
| 26 |
1 18
|
odcl2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℕ ) |
| 27 |
5 16 17 26
|
syl3anc |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℕ ) |
| 28 |
|
pcprmpw2 |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( 𝑃 ↑ 𝑛 ) ↔ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) ) |
| 29 |
|
pcprmpw |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ↔ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ) ) ) ) |
| 30 |
28 29
|
bitr4d |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( 𝑃 ↑ 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ) ) |
| 31 |
7 27 30
|
syl2anc |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( 𝑃 ↑ 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ) ) |
| 32 |
25 31
|
mpbid |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ) |
| 33 |
32
|
ralrimiva |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ) |
| 34 |
1 18
|
ispgp |
⊢ ( 𝑃 pGrp 𝐺 ↔ ( 𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) = ( 𝑃 ↑ 𝑛 ) ) ) |
| 35 |
2 3 33 34
|
syl3anbrc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) ) → 𝑃 pGrp 𝐺 ) |
| 36 |
35
|
ex |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑋 ) = ( 𝑃 ↑ 𝑁 ) → 𝑃 pGrp 𝐺 ) ) |