| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pgpfi1.1 |
|- X = ( Base ` G ) |
| 2 |
|
simpl2 |
|- ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) -> P e. Prime ) |
| 3 |
|
simpl1 |
|- ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) -> G e. Grp ) |
| 4 |
|
simpll3 |
|- ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> N e. NN0 ) |
| 5 |
3
|
adantr |
|- ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> G e. Grp ) |
| 6 |
|
simplr |
|- ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> ( # ` X ) = ( P ^ N ) ) |
| 7 |
2
|
adantr |
|- ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> P e. Prime ) |
| 8 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 9 |
7 8
|
syl |
|- ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> P e. NN ) |
| 10 |
9 4
|
nnexpcld |
|- ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> ( P ^ N ) e. NN ) |
| 11 |
10
|
nnnn0d |
|- ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> ( P ^ N ) e. NN0 ) |
| 12 |
6 11
|
eqeltrd |
|- ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> ( # ` X ) e. NN0 ) |
| 13 |
1
|
fvexi |
|- X e. _V |
| 14 |
|
hashclb |
|- ( X e. _V -> ( X e. Fin <-> ( # ` X ) e. NN0 ) ) |
| 15 |
13 14
|
ax-mp |
|- ( X e. Fin <-> ( # ` X ) e. NN0 ) |
| 16 |
12 15
|
sylibr |
|- ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> X e. Fin ) |
| 17 |
|
simpr |
|- ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> x e. X ) |
| 18 |
|
eqid |
|- ( od ` G ) = ( od ` G ) |
| 19 |
1 18
|
oddvds2 |
|- ( ( G e. Grp /\ X e. Fin /\ x e. X ) -> ( ( od ` G ) ` x ) || ( # ` X ) ) |
| 20 |
5 16 17 19
|
syl3anc |
|- ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> ( ( od ` G ) ` x ) || ( # ` X ) ) |
| 21 |
20 6
|
breqtrd |
|- ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> ( ( od ` G ) ` x ) || ( P ^ N ) ) |
| 22 |
|
oveq2 |
|- ( n = N -> ( P ^ n ) = ( P ^ N ) ) |
| 23 |
22
|
breq2d |
|- ( n = N -> ( ( ( od ` G ) ` x ) || ( P ^ n ) <-> ( ( od ` G ) ` x ) || ( P ^ N ) ) ) |
| 24 |
23
|
rspcev |
|- ( ( N e. NN0 /\ ( ( od ` G ) ` x ) || ( P ^ N ) ) -> E. n e. NN0 ( ( od ` G ) ` x ) || ( P ^ n ) ) |
| 25 |
4 21 24
|
syl2anc |
|- ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> E. n e. NN0 ( ( od ` G ) ` x ) || ( P ^ n ) ) |
| 26 |
1 18
|
odcl2 |
|- ( ( G e. Grp /\ X e. Fin /\ x e. X ) -> ( ( od ` G ) ` x ) e. NN ) |
| 27 |
5 16 17 26
|
syl3anc |
|- ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> ( ( od ` G ) ` x ) e. NN ) |
| 28 |
|
pcprmpw2 |
|- ( ( P e. Prime /\ ( ( od ` G ) ` x ) e. NN ) -> ( E. n e. NN0 ( ( od ` G ) ` x ) || ( P ^ n ) <-> ( ( od ` G ) ` x ) = ( P ^ ( P pCnt ( ( od ` G ) ` x ) ) ) ) ) |
| 29 |
|
pcprmpw |
|- ( ( P e. Prime /\ ( ( od ` G ) ` x ) e. NN ) -> ( E. n e. NN0 ( ( od ` G ) ` x ) = ( P ^ n ) <-> ( ( od ` G ) ` x ) = ( P ^ ( P pCnt ( ( od ` G ) ` x ) ) ) ) ) |
| 30 |
28 29
|
bitr4d |
|- ( ( P e. Prime /\ ( ( od ` G ) ` x ) e. NN ) -> ( E. n e. NN0 ( ( od ` G ) ` x ) || ( P ^ n ) <-> E. n e. NN0 ( ( od ` G ) ` x ) = ( P ^ n ) ) ) |
| 31 |
7 27 30
|
syl2anc |
|- ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> ( E. n e. NN0 ( ( od ` G ) ` x ) || ( P ^ n ) <-> E. n e. NN0 ( ( od ` G ) ` x ) = ( P ^ n ) ) ) |
| 32 |
25 31
|
mpbid |
|- ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> E. n e. NN0 ( ( od ` G ) ` x ) = ( P ^ n ) ) |
| 33 |
32
|
ralrimiva |
|- ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) -> A. x e. X E. n e. NN0 ( ( od ` G ) ` x ) = ( P ^ n ) ) |
| 34 |
1 18
|
ispgp |
|- ( P pGrp G <-> ( P e. Prime /\ G e. Grp /\ A. x e. X E. n e. NN0 ( ( od ` G ) ` x ) = ( P ^ n ) ) ) |
| 35 |
2 3 33 34
|
syl3anbrc |
|- ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) -> P pGrp G ) |
| 36 |
35
|
ex |
|- ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) -> ( ( # ` X ) = ( P ^ N ) -> P pGrp G ) ) |