Step |
Hyp |
Ref |
Expression |
1 |
|
pgp0.1 |
|- .0. = ( 0g ` G ) |
2 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
3 |
2
|
adantl |
|- ( ( G e. Grp /\ P e. Prime ) -> P e. NN ) |
4 |
3
|
nncnd |
|- ( ( G e. Grp /\ P e. Prime ) -> P e. CC ) |
5 |
4
|
exp0d |
|- ( ( G e. Grp /\ P e. Prime ) -> ( P ^ 0 ) = 1 ) |
6 |
1
|
fvexi |
|- .0. e. _V |
7 |
|
hashsng |
|- ( .0. e. _V -> ( # ` { .0. } ) = 1 ) |
8 |
6 7
|
ax-mp |
|- ( # ` { .0. } ) = 1 |
9 |
1
|
0subg |
|- ( G e. Grp -> { .0. } e. ( SubGrp ` G ) ) |
10 |
9
|
adantr |
|- ( ( G e. Grp /\ P e. Prime ) -> { .0. } e. ( SubGrp ` G ) ) |
11 |
|
eqid |
|- ( G |`s { .0. } ) = ( G |`s { .0. } ) |
12 |
11
|
subgbas |
|- ( { .0. } e. ( SubGrp ` G ) -> { .0. } = ( Base ` ( G |`s { .0. } ) ) ) |
13 |
10 12
|
syl |
|- ( ( G e. Grp /\ P e. Prime ) -> { .0. } = ( Base ` ( G |`s { .0. } ) ) ) |
14 |
13
|
fveq2d |
|- ( ( G e. Grp /\ P e. Prime ) -> ( # ` { .0. } ) = ( # ` ( Base ` ( G |`s { .0. } ) ) ) ) |
15 |
8 14
|
eqtr3id |
|- ( ( G e. Grp /\ P e. Prime ) -> 1 = ( # ` ( Base ` ( G |`s { .0. } ) ) ) ) |
16 |
5 15
|
eqtr2d |
|- ( ( G e. Grp /\ P e. Prime ) -> ( # ` ( Base ` ( G |`s { .0. } ) ) ) = ( P ^ 0 ) ) |
17 |
11
|
subggrp |
|- ( { .0. } e. ( SubGrp ` G ) -> ( G |`s { .0. } ) e. Grp ) |
18 |
10 17
|
syl |
|- ( ( G e. Grp /\ P e. Prime ) -> ( G |`s { .0. } ) e. Grp ) |
19 |
|
simpr |
|- ( ( G e. Grp /\ P e. Prime ) -> P e. Prime ) |
20 |
|
0nn0 |
|- 0 e. NN0 |
21 |
20
|
a1i |
|- ( ( G e. Grp /\ P e. Prime ) -> 0 e. NN0 ) |
22 |
|
eqid |
|- ( Base ` ( G |`s { .0. } ) ) = ( Base ` ( G |`s { .0. } ) ) |
23 |
22
|
pgpfi1 |
|- ( ( ( G |`s { .0. } ) e. Grp /\ P e. Prime /\ 0 e. NN0 ) -> ( ( # ` ( Base ` ( G |`s { .0. } ) ) ) = ( P ^ 0 ) -> P pGrp ( G |`s { .0. } ) ) ) |
24 |
18 19 21 23
|
syl3anc |
|- ( ( G e. Grp /\ P e. Prime ) -> ( ( # ` ( Base ` ( G |`s { .0. } ) ) ) = ( P ^ 0 ) -> P pGrp ( G |`s { .0. } ) ) ) |
25 |
16 24
|
mpd |
|- ( ( G e. Grp /\ P e. Prime ) -> P pGrp ( G |`s { .0. } ) ) |