Metamath Proof Explorer


Theorem pgp0

Description: The identity subgroup is a P -group for every prime P . (Contributed by Mario Carneiro, 19-Jan-2015)

Ref Expression
Hypothesis pgp0.1 0˙=0G
Assertion pgp0 GGrpPPpGrpG𝑠0˙

Proof

Step Hyp Ref Expression
1 pgp0.1 0˙=0G
2 prmnn PP
3 2 adantl GGrpPP
4 3 nncnd GGrpPP
5 4 exp0d GGrpPP0=1
6 1 fvexi 0˙V
7 hashsng 0˙V0˙=1
8 6 7 ax-mp 0˙=1
9 1 0subg GGrp0˙SubGrpG
10 9 adantr GGrpP0˙SubGrpG
11 eqid G𝑠0˙=G𝑠0˙
12 11 subgbas 0˙SubGrpG0˙=BaseG𝑠0˙
13 10 12 syl GGrpP0˙=BaseG𝑠0˙
14 13 fveq2d GGrpP0˙=BaseG𝑠0˙
15 8 14 eqtr3id GGrpP1=BaseG𝑠0˙
16 5 15 eqtr2d GGrpPBaseG𝑠0˙=P0
17 11 subggrp 0˙SubGrpGG𝑠0˙Grp
18 10 17 syl GGrpPG𝑠0˙Grp
19 simpr GGrpPP
20 0nn0 00
21 20 a1i GGrpP00
22 eqid BaseG𝑠0˙=BaseG𝑠0˙
23 22 pgpfi1 G𝑠0˙GrpP00BaseG𝑠0˙=P0PpGrpG𝑠0˙
24 18 19 21 23 syl3anc GGrpPBaseG𝑠0˙=P0PpGrpG𝑠0˙
25 16 24 mpd GGrpPPpGrpG𝑠0˙