Description: The identity subgroup is a P -group for every prime P . (Contributed by Mario Carneiro, 19-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | pgp0.1 | |
|
Assertion | pgp0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pgp0.1 | |
|
2 | prmnn | |
|
3 | 2 | adantl | |
4 | 3 | nncnd | |
5 | 4 | exp0d | |
6 | 1 | fvexi | |
7 | hashsng | |
|
8 | 6 7 | ax-mp | |
9 | 1 | 0subg | |
10 | 9 | adantr | |
11 | eqid | |
|
12 | 11 | subgbas | |
13 | 10 12 | syl | |
14 | 13 | fveq2d | |
15 | 8 14 | eqtr3id | |
16 | 5 15 | eqtr2d | |
17 | 11 | subggrp | |
18 | 10 17 | syl | |
19 | simpr | |
|
20 | 0nn0 | |
|
21 | 20 | a1i | |
22 | eqid | |
|
23 | 22 | pgpfi1 | |
24 | 18 19 21 23 | syl3anc | |
25 | 16 24 | mpd | |