| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sylow2a.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | sylow2a.m | ⊢ ( 𝜑  →   ⊕   ∈  ( 𝐺  GrpAct  𝑌 ) ) | 
						
							| 3 |  | sylow2a.p | ⊢ ( 𝜑  →  𝑃  pGrp  𝐺 ) | 
						
							| 4 |  | sylow2a.f | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 5 |  | sylow2a.y | ⊢ ( 𝜑  →  𝑌  ∈  Fin ) | 
						
							| 6 |  | sylow2a.z | ⊢ 𝑍  =  { 𝑢  ∈  𝑌  ∣  ∀ ℎ  ∈  𝑋 ( ℎ  ⊕  𝑢 )  =  𝑢 } | 
						
							| 7 |  | sylow2a.r | ⊢  ∼   =  { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  𝑌  ∧  ∃ 𝑔  ∈  𝑋 ( 𝑔  ⊕  𝑥 )  =  𝑦 ) } | 
						
							| 8 | 1 2 3 4 5 6 7 | sylow2alem2 | ⊢ ( 𝜑  →  𝑃  ∥  Σ 𝑧  ∈  ( ( 𝑌  /   ∼  )  ∖  𝒫  𝑍 ) ( ♯ ‘ 𝑧 ) ) | 
						
							| 9 |  | inass | ⊢ ( ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 )  ∩  ( ( 𝑌  /   ∼  )  ∖  𝒫  𝑍 ) )  =  ( ( 𝑌  /   ∼  )  ∩  ( 𝒫  𝑍  ∩  ( ( 𝑌  /   ∼  )  ∖  𝒫  𝑍 ) ) ) | 
						
							| 10 |  | disjdif | ⊢ ( 𝒫  𝑍  ∩  ( ( 𝑌  /   ∼  )  ∖  𝒫  𝑍 ) )  =  ∅ | 
						
							| 11 | 10 | ineq2i | ⊢ ( ( 𝑌  /   ∼  )  ∩  ( 𝒫  𝑍  ∩  ( ( 𝑌  /   ∼  )  ∖  𝒫  𝑍 ) ) )  =  ( ( 𝑌  /   ∼  )  ∩  ∅ ) | 
						
							| 12 |  | in0 | ⊢ ( ( 𝑌  /   ∼  )  ∩  ∅ )  =  ∅ | 
						
							| 13 | 9 11 12 | 3eqtri | ⊢ ( ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 )  ∩  ( ( 𝑌  /   ∼  )  ∖  𝒫  𝑍 ) )  =  ∅ | 
						
							| 14 | 13 | a1i | ⊢ ( 𝜑  →  ( ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 )  ∩  ( ( 𝑌  /   ∼  )  ∖  𝒫  𝑍 ) )  =  ∅ ) | 
						
							| 15 |  | inundif | ⊢ ( ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 )  ∪  ( ( 𝑌  /   ∼  )  ∖  𝒫  𝑍 ) )  =  ( 𝑌  /   ∼  ) | 
						
							| 16 | 15 | eqcomi | ⊢ ( 𝑌  /   ∼  )  =  ( ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 )  ∪  ( ( 𝑌  /   ∼  )  ∖  𝒫  𝑍 ) ) | 
						
							| 17 | 16 | a1i | ⊢ ( 𝜑  →  ( 𝑌  /   ∼  )  =  ( ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 )  ∪  ( ( 𝑌  /   ∼  )  ∖  𝒫  𝑍 ) ) ) | 
						
							| 18 |  | pwfi | ⊢ ( 𝑌  ∈  Fin  ↔  𝒫  𝑌  ∈  Fin ) | 
						
							| 19 | 5 18 | sylib | ⊢ ( 𝜑  →  𝒫  𝑌  ∈  Fin ) | 
						
							| 20 | 7 1 | gaorber | ⊢ (  ⊕   ∈  ( 𝐺  GrpAct  𝑌 )  →   ∼   Er  𝑌 ) | 
						
							| 21 | 2 20 | syl | ⊢ ( 𝜑  →   ∼   Er  𝑌 ) | 
						
							| 22 | 21 | qsss | ⊢ ( 𝜑  →  ( 𝑌  /   ∼  )  ⊆  𝒫  𝑌 ) | 
						
							| 23 | 19 22 | ssfid | ⊢ ( 𝜑  →  ( 𝑌  /   ∼  )  ∈  Fin ) | 
						
							| 24 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  /   ∼  ) )  →  𝑌  ∈  Fin ) | 
						
							| 25 | 22 | sselda | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  /   ∼  ) )  →  𝑧  ∈  𝒫  𝑌 ) | 
						
							| 26 | 25 | elpwid | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  /   ∼  ) )  →  𝑧  ⊆  𝑌 ) | 
						
							| 27 | 24 26 | ssfid | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  /   ∼  ) )  →  𝑧  ∈  Fin ) | 
						
							| 28 |  | hashcl | ⊢ ( 𝑧  ∈  Fin  →  ( ♯ ‘ 𝑧 )  ∈  ℕ0 ) | 
						
							| 29 | 27 28 | syl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  /   ∼  ) )  →  ( ♯ ‘ 𝑧 )  ∈  ℕ0 ) | 
						
							| 30 | 29 | nn0cnd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  /   ∼  ) )  →  ( ♯ ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 31 | 14 17 23 30 | fsumsplit | ⊢ ( 𝜑  →  Σ 𝑧  ∈  ( 𝑌  /   ∼  ) ( ♯ ‘ 𝑧 )  =  ( Σ 𝑧  ∈  ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 ) ( ♯ ‘ 𝑧 )  +  Σ 𝑧  ∈  ( ( 𝑌  /   ∼  )  ∖  𝒫  𝑍 ) ( ♯ ‘ 𝑧 ) ) ) | 
						
							| 32 | 21 5 | qshash | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑌 )  =  Σ 𝑧  ∈  ( 𝑌  /   ∼  ) ( ♯ ‘ 𝑧 ) ) | 
						
							| 33 |  | inss1 | ⊢ ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 )  ⊆  ( 𝑌  /   ∼  ) | 
						
							| 34 |  | ssfi | ⊢ ( ( ( 𝑌  /   ∼  )  ∈  Fin  ∧  ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 )  ⊆  ( 𝑌  /   ∼  ) )  →  ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 )  ∈  Fin ) | 
						
							| 35 | 23 33 34 | sylancl | ⊢ ( 𝜑  →  ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 )  ∈  Fin ) | 
						
							| 36 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 37 |  | fsumconst | ⊢ ( ( ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 )  ∈  Fin  ∧  1  ∈  ℂ )  →  Σ 𝑧  ∈  ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 ) 1  =  ( ( ♯ ‘ ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 ) )  ·  1 ) ) | 
						
							| 38 | 35 36 37 | sylancl | ⊢ ( 𝜑  →  Σ 𝑧  ∈  ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 ) 1  =  ( ( ♯ ‘ ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 ) )  ·  1 ) ) | 
						
							| 39 |  | elin | ⊢ ( 𝑧  ∈  ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 )  ↔  ( 𝑧  ∈  ( 𝑌  /   ∼  )  ∧  𝑧  ∈  𝒫  𝑍 ) ) | 
						
							| 40 |  | eqid | ⊢ ( 𝑌  /   ∼  )  =  ( 𝑌  /   ∼  ) | 
						
							| 41 |  | sseq1 | ⊢ ( [ 𝑤 ]  ∼   =  𝑧  →  ( [ 𝑤 ]  ∼   ⊆  𝑍  ↔  𝑧  ⊆  𝑍 ) ) | 
						
							| 42 |  | velpw | ⊢ ( 𝑧  ∈  𝒫  𝑍  ↔  𝑧  ⊆  𝑍 ) | 
						
							| 43 | 41 42 | bitr4di | ⊢ ( [ 𝑤 ]  ∼   =  𝑧  →  ( [ 𝑤 ]  ∼   ⊆  𝑍  ↔  𝑧  ∈  𝒫  𝑍 ) ) | 
						
							| 44 |  | breq1 | ⊢ ( [ 𝑤 ]  ∼   =  𝑧  →  ( [ 𝑤 ]  ∼   ≈  1o  ↔  𝑧  ≈  1o ) ) | 
						
							| 45 | 43 44 | imbi12d | ⊢ ( [ 𝑤 ]  ∼   =  𝑧  →  ( ( [ 𝑤 ]  ∼   ⊆  𝑍  →  [ 𝑤 ]  ∼   ≈  1o )  ↔  ( 𝑧  ∈  𝒫  𝑍  →  𝑧  ≈  1o ) ) ) | 
						
							| 46 | 21 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →   ∼   Er  𝑌 ) | 
						
							| 47 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  𝑤  ∈  𝑌 ) | 
						
							| 48 | 46 47 | erref | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  𝑤  ∼  𝑤 ) | 
						
							| 49 |  | vex | ⊢ 𝑤  ∈  V | 
						
							| 50 | 49 49 | elec | ⊢ ( 𝑤  ∈  [ 𝑤 ]  ∼   ↔  𝑤  ∼  𝑤 ) | 
						
							| 51 | 48 50 | sylibr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  𝑤  ∈  [ 𝑤 ]  ∼  ) | 
						
							| 52 |  | ssel | ⊢ ( [ 𝑤 ]  ∼   ⊆  𝑍  →  ( 𝑤  ∈  [ 𝑤 ]  ∼   →  𝑤  ∈  𝑍 ) ) | 
						
							| 53 | 51 52 | syl5com | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  ( [ 𝑤 ]  ∼   ⊆  𝑍  →  𝑤  ∈  𝑍 ) ) | 
						
							| 54 | 1 2 3 4 5 6 7 | sylow2alem1 | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  →  [ 𝑤 ]  ∼   =  { 𝑤 } ) | 
						
							| 55 | 49 | ensn1 | ⊢ { 𝑤 }  ≈  1o | 
						
							| 56 | 54 55 | eqbrtrdi | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  →  [ 𝑤 ]  ∼   ≈  1o ) | 
						
							| 57 | 56 | ex | ⊢ ( 𝜑  →  ( 𝑤  ∈  𝑍  →  [ 𝑤 ]  ∼   ≈  1o ) ) | 
						
							| 58 | 57 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  ( 𝑤  ∈  𝑍  →  [ 𝑤 ]  ∼   ≈  1o ) ) | 
						
							| 59 | 53 58 | syld | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑌 )  →  ( [ 𝑤 ]  ∼   ⊆  𝑍  →  [ 𝑤 ]  ∼   ≈  1o ) ) | 
						
							| 60 | 40 45 59 | ectocld | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝑌  /   ∼  ) )  →  ( 𝑧  ∈  𝒫  𝑍  →  𝑧  ≈  1o ) ) | 
						
							| 61 | 60 | impr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ( 𝑌  /   ∼  )  ∧  𝑧  ∈  𝒫  𝑍 ) )  →  𝑧  ≈  1o ) | 
						
							| 62 | 39 61 | sylan2b | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 ) )  →  𝑧  ≈  1o ) | 
						
							| 63 |  | en1b | ⊢ ( 𝑧  ≈  1o  ↔  𝑧  =  { ∪  𝑧 } ) | 
						
							| 64 | 62 63 | sylib | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 ) )  →  𝑧  =  { ∪  𝑧 } ) | 
						
							| 65 | 64 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 ) )  →  ( ♯ ‘ 𝑧 )  =  ( ♯ ‘ { ∪  𝑧 } ) ) | 
						
							| 66 |  | vuniex | ⊢ ∪  𝑧  ∈  V | 
						
							| 67 |  | hashsng | ⊢ ( ∪  𝑧  ∈  V  →  ( ♯ ‘ { ∪  𝑧 } )  =  1 ) | 
						
							| 68 | 66 67 | ax-mp | ⊢ ( ♯ ‘ { ∪  𝑧 } )  =  1 | 
						
							| 69 | 65 68 | eqtrdi | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 ) )  →  ( ♯ ‘ 𝑧 )  =  1 ) | 
						
							| 70 | 69 | sumeq2dv | ⊢ ( 𝜑  →  Σ 𝑧  ∈  ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 ) ( ♯ ‘ 𝑧 )  =  Σ 𝑧  ∈  ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 ) 1 ) | 
						
							| 71 | 6 | ssrab3 | ⊢ 𝑍  ⊆  𝑌 | 
						
							| 72 |  | ssfi | ⊢ ( ( 𝑌  ∈  Fin  ∧  𝑍  ⊆  𝑌 )  →  𝑍  ∈  Fin ) | 
						
							| 73 | 5 71 72 | sylancl | ⊢ ( 𝜑  →  𝑍  ∈  Fin ) | 
						
							| 74 |  | hashcl | ⊢ ( 𝑍  ∈  Fin  →  ( ♯ ‘ 𝑍 )  ∈  ℕ0 ) | 
						
							| 75 | 73 74 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑍 )  ∈  ℕ0 ) | 
						
							| 76 | 75 | nn0cnd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑍 )  ∈  ℂ ) | 
						
							| 77 | 76 | mulridd | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑍 )  ·  1 )  =  ( ♯ ‘ 𝑍 ) ) | 
						
							| 78 | 6 5 | rabexd | ⊢ ( 𝜑  →  𝑍  ∈  V ) | 
						
							| 79 |  | eqid | ⊢ ( 𝑤  ∈  𝑍  ↦  { 𝑤 } )  =  ( 𝑤  ∈  𝑍  ↦  { 𝑤 } ) | 
						
							| 80 | 7 | relopabiv | ⊢ Rel   ∼ | 
						
							| 81 |  | relssdmrn | ⊢ ( Rel   ∼   →   ∼   ⊆  ( dom   ∼   ×  ran   ∼  ) ) | 
						
							| 82 | 80 81 | ax-mp | ⊢  ∼   ⊆  ( dom   ∼   ×  ran   ∼  ) | 
						
							| 83 |  | erdm | ⊢ (  ∼   Er  𝑌  →  dom   ∼   =  𝑌 ) | 
						
							| 84 | 21 83 | syl | ⊢ ( 𝜑  →  dom   ∼   =  𝑌 ) | 
						
							| 85 | 84 5 | eqeltrd | ⊢ ( 𝜑  →  dom   ∼   ∈  Fin ) | 
						
							| 86 |  | errn | ⊢ (  ∼   Er  𝑌  →  ran   ∼   =  𝑌 ) | 
						
							| 87 | 21 86 | syl | ⊢ ( 𝜑  →  ran   ∼   =  𝑌 ) | 
						
							| 88 | 87 5 | eqeltrd | ⊢ ( 𝜑  →  ran   ∼   ∈  Fin ) | 
						
							| 89 | 85 88 | xpexd | ⊢ ( 𝜑  →  ( dom   ∼   ×  ran   ∼  )  ∈  V ) | 
						
							| 90 |  | ssexg | ⊢ ( (  ∼   ⊆  ( dom   ∼   ×  ran   ∼  )  ∧  ( dom   ∼   ×  ran   ∼  )  ∈  V )  →   ∼   ∈  V ) | 
						
							| 91 | 82 89 90 | sylancr | ⊢ ( 𝜑  →   ∼   ∈  V ) | 
						
							| 92 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  →  𝑤  ∈  𝑍 ) | 
						
							| 93 | 71 92 | sselid | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  →  𝑤  ∈  𝑌 ) | 
						
							| 94 |  | ecelqsg | ⊢ ( (  ∼   ∈  V  ∧  𝑤  ∈  𝑌 )  →  [ 𝑤 ]  ∼   ∈  ( 𝑌  /   ∼  ) ) | 
						
							| 95 | 91 93 94 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  →  [ 𝑤 ]  ∼   ∈  ( 𝑌  /   ∼  ) ) | 
						
							| 96 | 54 95 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  →  { 𝑤 }  ∈  ( 𝑌  /   ∼  ) ) | 
						
							| 97 |  | snelpwi | ⊢ ( 𝑤  ∈  𝑍  →  { 𝑤 }  ∈  𝒫  𝑍 ) | 
						
							| 98 | 97 | adantl | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  →  { 𝑤 }  ∈  𝒫  𝑍 ) | 
						
							| 99 | 96 98 | elind | ⊢ ( ( 𝜑  ∧  𝑤  ∈  𝑍 )  →  { 𝑤 }  ∈  ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 ) ) | 
						
							| 100 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 ) )  →  𝑧  ∈  ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 ) ) | 
						
							| 101 | 100 | elin2d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 ) )  →  𝑧  ∈  𝒫  𝑍 ) | 
						
							| 102 | 101 | elpwid | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 ) )  →  𝑧  ⊆  𝑍 ) | 
						
							| 103 | 64 102 | eqsstrrd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 ) )  →  { ∪  𝑧 }  ⊆  𝑍 ) | 
						
							| 104 | 66 | snss | ⊢ ( ∪  𝑧  ∈  𝑍  ↔  { ∪  𝑧 }  ⊆  𝑍 ) | 
						
							| 105 | 103 104 | sylibr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 ) )  →  ∪  𝑧  ∈  𝑍 ) | 
						
							| 106 |  | sneq | ⊢ ( 𝑤  =  ∪  𝑧  →  { 𝑤 }  =  { ∪  𝑧 } ) | 
						
							| 107 | 106 | eqeq2d | ⊢ ( 𝑤  =  ∪  𝑧  →  ( 𝑧  =  { 𝑤 }  ↔  𝑧  =  { ∪  𝑧 } ) ) | 
						
							| 108 | 64 107 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 ) )  →  ( 𝑤  =  ∪  𝑧  →  𝑧  =  { 𝑤 } ) ) | 
						
							| 109 | 108 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑤  ∈  𝑍  ∧  𝑧  ∈  ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 ) ) )  →  ( 𝑤  =  ∪  𝑧  →  𝑧  =  { 𝑤 } ) ) | 
						
							| 110 |  | unieq | ⊢ ( 𝑧  =  { 𝑤 }  →  ∪  𝑧  =  ∪  { 𝑤 } ) | 
						
							| 111 |  | unisnv | ⊢ ∪  { 𝑤 }  =  𝑤 | 
						
							| 112 | 110 111 | eqtr2di | ⊢ ( 𝑧  =  { 𝑤 }  →  𝑤  =  ∪  𝑧 ) | 
						
							| 113 | 109 112 | impbid1 | ⊢ ( ( 𝜑  ∧  ( 𝑤  ∈  𝑍  ∧  𝑧  ∈  ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 ) ) )  →  ( 𝑤  =  ∪  𝑧  ↔  𝑧  =  { 𝑤 } ) ) | 
						
							| 114 | 79 99 105 113 | f1o2d | ⊢ ( 𝜑  →  ( 𝑤  ∈  𝑍  ↦  { 𝑤 } ) : 𝑍 –1-1-onto→ ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 ) ) | 
						
							| 115 | 78 114 | hasheqf1od | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑍 )  =  ( ♯ ‘ ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 ) ) ) | 
						
							| 116 | 115 | oveq1d | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑍 )  ·  1 )  =  ( ( ♯ ‘ ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 ) )  ·  1 ) ) | 
						
							| 117 | 77 116 | eqtr3d | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑍 )  =  ( ( ♯ ‘ ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 ) )  ·  1 ) ) | 
						
							| 118 | 38 70 117 | 3eqtr4rd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑍 )  =  Σ 𝑧  ∈  ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 ) ( ♯ ‘ 𝑧 ) ) | 
						
							| 119 | 118 | oveq1d | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑍 )  +  Σ 𝑧  ∈  ( ( 𝑌  /   ∼  )  ∖  𝒫  𝑍 ) ( ♯ ‘ 𝑧 ) )  =  ( Σ 𝑧  ∈  ( ( 𝑌  /   ∼  )  ∩  𝒫  𝑍 ) ( ♯ ‘ 𝑧 )  +  Σ 𝑧  ∈  ( ( 𝑌  /   ∼  )  ∖  𝒫  𝑍 ) ( ♯ ‘ 𝑧 ) ) ) | 
						
							| 120 | 31 32 119 | 3eqtr4rd | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑍 )  +  Σ 𝑧  ∈  ( ( 𝑌  /   ∼  )  ∖  𝒫  𝑍 ) ( ♯ ‘ 𝑧 ) )  =  ( ♯ ‘ 𝑌 ) ) | 
						
							| 121 |  | hashcl | ⊢ ( 𝑌  ∈  Fin  →  ( ♯ ‘ 𝑌 )  ∈  ℕ0 ) | 
						
							| 122 | 5 121 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑌 )  ∈  ℕ0 ) | 
						
							| 123 | 122 | nn0cnd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑌 )  ∈  ℂ ) | 
						
							| 124 |  | diffi | ⊢ ( ( 𝑌  /   ∼  )  ∈  Fin  →  ( ( 𝑌  /   ∼  )  ∖  𝒫  𝑍 )  ∈  Fin ) | 
						
							| 125 | 23 124 | syl | ⊢ ( 𝜑  →  ( ( 𝑌  /   ∼  )  ∖  𝒫  𝑍 )  ∈  Fin ) | 
						
							| 126 |  | eldifi | ⊢ ( 𝑧  ∈  ( ( 𝑌  /   ∼  )  ∖  𝒫  𝑍 )  →  𝑧  ∈  ( 𝑌  /   ∼  ) ) | 
						
							| 127 | 126 30 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ( 𝑌  /   ∼  )  ∖  𝒫  𝑍 ) )  →  ( ♯ ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 128 | 125 127 | fsumcl | ⊢ ( 𝜑  →  Σ 𝑧  ∈  ( ( 𝑌  /   ∼  )  ∖  𝒫  𝑍 ) ( ♯ ‘ 𝑧 )  ∈  ℂ ) | 
						
							| 129 | 123 76 128 | subaddd | ⊢ ( 𝜑  →  ( ( ( ♯ ‘ 𝑌 )  −  ( ♯ ‘ 𝑍 ) )  =  Σ 𝑧  ∈  ( ( 𝑌  /   ∼  )  ∖  𝒫  𝑍 ) ( ♯ ‘ 𝑧 )  ↔  ( ( ♯ ‘ 𝑍 )  +  Σ 𝑧  ∈  ( ( 𝑌  /   ∼  )  ∖  𝒫  𝑍 ) ( ♯ ‘ 𝑧 ) )  =  ( ♯ ‘ 𝑌 ) ) ) | 
						
							| 130 | 120 129 | mpbird | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑌 )  −  ( ♯ ‘ 𝑍 ) )  =  Σ 𝑧  ∈  ( ( 𝑌  /   ∼  )  ∖  𝒫  𝑍 ) ( ♯ ‘ 𝑧 ) ) | 
						
							| 131 | 8 130 | breqtrrd | ⊢ ( 𝜑  →  𝑃  ∥  ( ( ♯ ‘ 𝑌 )  −  ( ♯ ‘ 𝑍 ) ) ) |