| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qshash.1 |
⊢ ( 𝜑 → ∼ Er 𝐴 ) |
| 2 |
|
qshash.2 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 3 |
|
erex |
⊢ ( ∼ Er 𝐴 → ( 𝐴 ∈ Fin → ∼ ∈ V ) ) |
| 4 |
1 2 3
|
sylc |
⊢ ( 𝜑 → ∼ ∈ V ) |
| 5 |
1 4
|
uniqs2 |
⊢ ( 𝜑 → ∪ ( 𝐴 / ∼ ) = 𝐴 ) |
| 6 |
5
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ ∪ ( 𝐴 / ∼ ) ) = ( ♯ ‘ 𝐴 ) ) |
| 7 |
|
pwfi |
⊢ ( 𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin ) |
| 8 |
2 7
|
sylib |
⊢ ( 𝜑 → 𝒫 𝐴 ∈ Fin ) |
| 9 |
1
|
qsss |
⊢ ( 𝜑 → ( 𝐴 / ∼ ) ⊆ 𝒫 𝐴 ) |
| 10 |
8 9
|
ssfid |
⊢ ( 𝜑 → ( 𝐴 / ∼ ) ∈ Fin ) |
| 11 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴 ) |
| 12 |
|
ssfi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝑥 ⊆ 𝐴 ) → 𝑥 ∈ Fin ) |
| 13 |
12
|
ex |
⊢ ( 𝐴 ∈ Fin → ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ Fin ) ) |
| 14 |
2 11 13
|
syl2im |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ Fin ) ) |
| 15 |
14
|
ssrdv |
⊢ ( 𝜑 → 𝒫 𝐴 ⊆ Fin ) |
| 16 |
9 15
|
sstrd |
⊢ ( 𝜑 → ( 𝐴 / ∼ ) ⊆ Fin ) |
| 17 |
|
qsdisj2 |
⊢ ( ∼ Er 𝐴 → Disj 𝑥 ∈ ( 𝐴 / ∼ ) 𝑥 ) |
| 18 |
1 17
|
syl |
⊢ ( 𝜑 → Disj 𝑥 ∈ ( 𝐴 / ∼ ) 𝑥 ) |
| 19 |
10 16 18
|
hashuni |
⊢ ( 𝜑 → ( ♯ ‘ ∪ ( 𝐴 / ∼ ) ) = Σ 𝑥 ∈ ( 𝐴 / ∼ ) ( ♯ ‘ 𝑥 ) ) |
| 20 |
6 19
|
eqtr3d |
⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = Σ 𝑥 ∈ ( 𝐴 / ∼ ) ( ♯ ‘ 𝑥 ) ) |