| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sylow2a.x |  | 
						
							| 2 |  | sylow2a.m |  | 
						
							| 3 |  | sylow2a.p |  | 
						
							| 4 |  | sylow2a.f |  | 
						
							| 5 |  | sylow2a.y |  | 
						
							| 6 |  | sylow2a.z |  | 
						
							| 7 |  | sylow2a.r |  | 
						
							| 8 | 1 2 3 4 5 6 7 | sylow2alem2 |  | 
						
							| 9 |  | inass |  | 
						
							| 10 |  | disjdif |  | 
						
							| 11 | 10 | ineq2i |  | 
						
							| 12 |  | in0 |  | 
						
							| 13 | 9 11 12 | 3eqtri |  | 
						
							| 14 | 13 | a1i |  | 
						
							| 15 |  | inundif |  | 
						
							| 16 | 15 | eqcomi |  | 
						
							| 17 | 16 | a1i |  | 
						
							| 18 |  | pwfi |  | 
						
							| 19 | 5 18 | sylib |  | 
						
							| 20 | 7 1 | gaorber |  | 
						
							| 21 | 2 20 | syl |  | 
						
							| 22 | 21 | qsss |  | 
						
							| 23 | 19 22 | ssfid |  | 
						
							| 24 | 5 | adantr |  | 
						
							| 25 | 22 | sselda |  | 
						
							| 26 | 25 | elpwid |  | 
						
							| 27 | 24 26 | ssfid |  | 
						
							| 28 |  | hashcl |  | 
						
							| 29 | 27 28 | syl |  | 
						
							| 30 | 29 | nn0cnd |  | 
						
							| 31 | 14 17 23 30 | fsumsplit |  | 
						
							| 32 | 21 5 | qshash |  | 
						
							| 33 |  | inss1 |  | 
						
							| 34 |  | ssfi |  | 
						
							| 35 | 23 33 34 | sylancl |  | 
						
							| 36 |  | ax-1cn |  | 
						
							| 37 |  | fsumconst |  | 
						
							| 38 | 35 36 37 | sylancl |  | 
						
							| 39 |  | elin |  | 
						
							| 40 |  | eqid |  | 
						
							| 41 |  | sseq1 |  | 
						
							| 42 |  | velpw |  | 
						
							| 43 | 41 42 | bitr4di |  | 
						
							| 44 |  | breq1 |  | 
						
							| 45 | 43 44 | imbi12d |  | 
						
							| 46 | 21 | adantr |  | 
						
							| 47 |  | simpr |  | 
						
							| 48 | 46 47 | erref |  | 
						
							| 49 |  | vex |  | 
						
							| 50 | 49 49 | elec |  | 
						
							| 51 | 48 50 | sylibr |  | 
						
							| 52 |  | ssel |  | 
						
							| 53 | 51 52 | syl5com |  | 
						
							| 54 | 1 2 3 4 5 6 7 | sylow2alem1 |  | 
						
							| 55 | 49 | ensn1 |  | 
						
							| 56 | 54 55 | eqbrtrdi |  | 
						
							| 57 | 56 | ex |  | 
						
							| 58 | 57 | adantr |  | 
						
							| 59 | 53 58 | syld |  | 
						
							| 60 | 40 45 59 | ectocld |  | 
						
							| 61 | 60 | impr |  | 
						
							| 62 | 39 61 | sylan2b |  | 
						
							| 63 |  | en1b |  | 
						
							| 64 | 62 63 | sylib |  | 
						
							| 65 | 64 | fveq2d |  | 
						
							| 66 |  | vuniex |  | 
						
							| 67 |  | hashsng |  | 
						
							| 68 | 66 67 | ax-mp |  | 
						
							| 69 | 65 68 | eqtrdi |  | 
						
							| 70 | 69 | sumeq2dv |  | 
						
							| 71 | 6 | ssrab3 |  | 
						
							| 72 |  | ssfi |  | 
						
							| 73 | 5 71 72 | sylancl |  | 
						
							| 74 |  | hashcl |  | 
						
							| 75 | 73 74 | syl |  | 
						
							| 76 | 75 | nn0cnd |  | 
						
							| 77 | 76 | mulridd |  | 
						
							| 78 | 6 5 | rabexd |  | 
						
							| 79 |  | eqid |  | 
						
							| 80 | 7 | relopabiv |  | 
						
							| 81 |  | relssdmrn |  | 
						
							| 82 | 80 81 | ax-mp |  | 
						
							| 83 |  | erdm |  | 
						
							| 84 | 21 83 | syl |  | 
						
							| 85 | 84 5 | eqeltrd |  | 
						
							| 86 |  | errn |  | 
						
							| 87 | 21 86 | syl |  | 
						
							| 88 | 87 5 | eqeltrd |  | 
						
							| 89 | 85 88 | xpexd |  | 
						
							| 90 |  | ssexg |  | 
						
							| 91 | 82 89 90 | sylancr |  | 
						
							| 92 |  | simpr |  | 
						
							| 93 | 71 92 | sselid |  | 
						
							| 94 |  | ecelqsg |  | 
						
							| 95 | 91 93 94 | syl2an2r |  | 
						
							| 96 | 54 95 | eqeltrrd |  | 
						
							| 97 |  | snelpwi |  | 
						
							| 98 | 97 | adantl |  | 
						
							| 99 | 96 98 | elind |  | 
						
							| 100 |  | simpr |  | 
						
							| 101 | 100 | elin2d |  | 
						
							| 102 | 101 | elpwid |  | 
						
							| 103 | 64 102 | eqsstrrd |  | 
						
							| 104 | 66 | snss |  | 
						
							| 105 | 103 104 | sylibr |  | 
						
							| 106 |  | sneq |  | 
						
							| 107 | 106 | eqeq2d |  | 
						
							| 108 | 64 107 | syl5ibrcom |  | 
						
							| 109 | 108 | adantrl |  | 
						
							| 110 |  | unieq |  | 
						
							| 111 |  | unisnv |  | 
						
							| 112 | 110 111 | eqtr2di |  | 
						
							| 113 | 109 112 | impbid1 |  | 
						
							| 114 | 79 99 105 113 | f1o2d |  | 
						
							| 115 | 78 114 | hasheqf1od |  | 
						
							| 116 | 115 | oveq1d |  | 
						
							| 117 | 77 116 | eqtr3d |  | 
						
							| 118 | 38 70 117 | 3eqtr4rd |  | 
						
							| 119 | 118 | oveq1d |  | 
						
							| 120 | 31 32 119 | 3eqtr4rd |  | 
						
							| 121 |  | hashcl |  | 
						
							| 122 | 5 121 | syl |  | 
						
							| 123 | 122 | nn0cnd |  | 
						
							| 124 |  | diffi |  | 
						
							| 125 | 23 124 | syl |  | 
						
							| 126 |  | eldifi |  | 
						
							| 127 | 126 30 | sylan2 |  | 
						
							| 128 | 125 127 | fsumcl |  | 
						
							| 129 | 123 76 128 | subaddd |  | 
						
							| 130 | 120 129 | mpbird |  | 
						
							| 131 | 8 130 | breqtrrd |  |