| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sylow2a.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | sylow2a.m |  |-  ( ph -> .(+) e. ( G GrpAct Y ) ) | 
						
							| 3 |  | sylow2a.p |  |-  ( ph -> P pGrp G ) | 
						
							| 4 |  | sylow2a.f |  |-  ( ph -> X e. Fin ) | 
						
							| 5 |  | sylow2a.y |  |-  ( ph -> Y e. Fin ) | 
						
							| 6 |  | sylow2a.z |  |-  Z = { u e. Y | A. h e. X ( h .(+) u ) = u } | 
						
							| 7 |  | sylow2a.r |  |-  .~ = { <. x , y >. | ( { x , y } C_ Y /\ E. g e. X ( g .(+) x ) = y ) } | 
						
							| 8 | 1 2 3 4 5 6 7 | sylow2alem2 |  |-  ( ph -> P || sum_ z e. ( ( Y /. .~ ) \ ~P Z ) ( # ` z ) ) | 
						
							| 9 |  | inass |  |-  ( ( ( Y /. .~ ) i^i ~P Z ) i^i ( ( Y /. .~ ) \ ~P Z ) ) = ( ( Y /. .~ ) i^i ( ~P Z i^i ( ( Y /. .~ ) \ ~P Z ) ) ) | 
						
							| 10 |  | disjdif |  |-  ( ~P Z i^i ( ( Y /. .~ ) \ ~P Z ) ) = (/) | 
						
							| 11 | 10 | ineq2i |  |-  ( ( Y /. .~ ) i^i ( ~P Z i^i ( ( Y /. .~ ) \ ~P Z ) ) ) = ( ( Y /. .~ ) i^i (/) ) | 
						
							| 12 |  | in0 |  |-  ( ( Y /. .~ ) i^i (/) ) = (/) | 
						
							| 13 | 9 11 12 | 3eqtri |  |-  ( ( ( Y /. .~ ) i^i ~P Z ) i^i ( ( Y /. .~ ) \ ~P Z ) ) = (/) | 
						
							| 14 | 13 | a1i |  |-  ( ph -> ( ( ( Y /. .~ ) i^i ~P Z ) i^i ( ( Y /. .~ ) \ ~P Z ) ) = (/) ) | 
						
							| 15 |  | inundif |  |-  ( ( ( Y /. .~ ) i^i ~P Z ) u. ( ( Y /. .~ ) \ ~P Z ) ) = ( Y /. .~ ) | 
						
							| 16 | 15 | eqcomi |  |-  ( Y /. .~ ) = ( ( ( Y /. .~ ) i^i ~P Z ) u. ( ( Y /. .~ ) \ ~P Z ) ) | 
						
							| 17 | 16 | a1i |  |-  ( ph -> ( Y /. .~ ) = ( ( ( Y /. .~ ) i^i ~P Z ) u. ( ( Y /. .~ ) \ ~P Z ) ) ) | 
						
							| 18 |  | pwfi |  |-  ( Y e. Fin <-> ~P Y e. Fin ) | 
						
							| 19 | 5 18 | sylib |  |-  ( ph -> ~P Y e. Fin ) | 
						
							| 20 | 7 1 | gaorber |  |-  ( .(+) e. ( G GrpAct Y ) -> .~ Er Y ) | 
						
							| 21 | 2 20 | syl |  |-  ( ph -> .~ Er Y ) | 
						
							| 22 | 21 | qsss |  |-  ( ph -> ( Y /. .~ ) C_ ~P Y ) | 
						
							| 23 | 19 22 | ssfid |  |-  ( ph -> ( Y /. .~ ) e. Fin ) | 
						
							| 24 | 5 | adantr |  |-  ( ( ph /\ z e. ( Y /. .~ ) ) -> Y e. Fin ) | 
						
							| 25 | 22 | sselda |  |-  ( ( ph /\ z e. ( Y /. .~ ) ) -> z e. ~P Y ) | 
						
							| 26 | 25 | elpwid |  |-  ( ( ph /\ z e. ( Y /. .~ ) ) -> z C_ Y ) | 
						
							| 27 | 24 26 | ssfid |  |-  ( ( ph /\ z e. ( Y /. .~ ) ) -> z e. Fin ) | 
						
							| 28 |  | hashcl |  |-  ( z e. Fin -> ( # ` z ) e. NN0 ) | 
						
							| 29 | 27 28 | syl |  |-  ( ( ph /\ z e. ( Y /. .~ ) ) -> ( # ` z ) e. NN0 ) | 
						
							| 30 | 29 | nn0cnd |  |-  ( ( ph /\ z e. ( Y /. .~ ) ) -> ( # ` z ) e. CC ) | 
						
							| 31 | 14 17 23 30 | fsumsplit |  |-  ( ph -> sum_ z e. ( Y /. .~ ) ( # ` z ) = ( sum_ z e. ( ( Y /. .~ ) i^i ~P Z ) ( # ` z ) + sum_ z e. ( ( Y /. .~ ) \ ~P Z ) ( # ` z ) ) ) | 
						
							| 32 | 21 5 | qshash |  |-  ( ph -> ( # ` Y ) = sum_ z e. ( Y /. .~ ) ( # ` z ) ) | 
						
							| 33 |  | inss1 |  |-  ( ( Y /. .~ ) i^i ~P Z ) C_ ( Y /. .~ ) | 
						
							| 34 |  | ssfi |  |-  ( ( ( Y /. .~ ) e. Fin /\ ( ( Y /. .~ ) i^i ~P Z ) C_ ( Y /. .~ ) ) -> ( ( Y /. .~ ) i^i ~P Z ) e. Fin ) | 
						
							| 35 | 23 33 34 | sylancl |  |-  ( ph -> ( ( Y /. .~ ) i^i ~P Z ) e. Fin ) | 
						
							| 36 |  | ax-1cn |  |-  1 e. CC | 
						
							| 37 |  | fsumconst |  |-  ( ( ( ( Y /. .~ ) i^i ~P Z ) e. Fin /\ 1 e. CC ) -> sum_ z e. ( ( Y /. .~ ) i^i ~P Z ) 1 = ( ( # ` ( ( Y /. .~ ) i^i ~P Z ) ) x. 1 ) ) | 
						
							| 38 | 35 36 37 | sylancl |  |-  ( ph -> sum_ z e. ( ( Y /. .~ ) i^i ~P Z ) 1 = ( ( # ` ( ( Y /. .~ ) i^i ~P Z ) ) x. 1 ) ) | 
						
							| 39 |  | elin |  |-  ( z e. ( ( Y /. .~ ) i^i ~P Z ) <-> ( z e. ( Y /. .~ ) /\ z e. ~P Z ) ) | 
						
							| 40 |  | eqid |  |-  ( Y /. .~ ) = ( Y /. .~ ) | 
						
							| 41 |  | sseq1 |  |-  ( [ w ] .~ = z -> ( [ w ] .~ C_ Z <-> z C_ Z ) ) | 
						
							| 42 |  | velpw |  |-  ( z e. ~P Z <-> z C_ Z ) | 
						
							| 43 | 41 42 | bitr4di |  |-  ( [ w ] .~ = z -> ( [ w ] .~ C_ Z <-> z e. ~P Z ) ) | 
						
							| 44 |  | breq1 |  |-  ( [ w ] .~ = z -> ( [ w ] .~ ~~ 1o <-> z ~~ 1o ) ) | 
						
							| 45 | 43 44 | imbi12d |  |-  ( [ w ] .~ = z -> ( ( [ w ] .~ C_ Z -> [ w ] .~ ~~ 1o ) <-> ( z e. ~P Z -> z ~~ 1o ) ) ) | 
						
							| 46 | 21 | adantr |  |-  ( ( ph /\ w e. Y ) -> .~ Er Y ) | 
						
							| 47 |  | simpr |  |-  ( ( ph /\ w e. Y ) -> w e. Y ) | 
						
							| 48 | 46 47 | erref |  |-  ( ( ph /\ w e. Y ) -> w .~ w ) | 
						
							| 49 |  | vex |  |-  w e. _V | 
						
							| 50 | 49 49 | elec |  |-  ( w e. [ w ] .~ <-> w .~ w ) | 
						
							| 51 | 48 50 | sylibr |  |-  ( ( ph /\ w e. Y ) -> w e. [ w ] .~ ) | 
						
							| 52 |  | ssel |  |-  ( [ w ] .~ C_ Z -> ( w e. [ w ] .~ -> w e. Z ) ) | 
						
							| 53 | 51 52 | syl5com |  |-  ( ( ph /\ w e. Y ) -> ( [ w ] .~ C_ Z -> w e. Z ) ) | 
						
							| 54 | 1 2 3 4 5 6 7 | sylow2alem1 |  |-  ( ( ph /\ w e. Z ) -> [ w ] .~ = { w } ) | 
						
							| 55 | 49 | ensn1 |  |-  { w } ~~ 1o | 
						
							| 56 | 54 55 | eqbrtrdi |  |-  ( ( ph /\ w e. Z ) -> [ w ] .~ ~~ 1o ) | 
						
							| 57 | 56 | ex |  |-  ( ph -> ( w e. Z -> [ w ] .~ ~~ 1o ) ) | 
						
							| 58 | 57 | adantr |  |-  ( ( ph /\ w e. Y ) -> ( w e. Z -> [ w ] .~ ~~ 1o ) ) | 
						
							| 59 | 53 58 | syld |  |-  ( ( ph /\ w e. Y ) -> ( [ w ] .~ C_ Z -> [ w ] .~ ~~ 1o ) ) | 
						
							| 60 | 40 45 59 | ectocld |  |-  ( ( ph /\ z e. ( Y /. .~ ) ) -> ( z e. ~P Z -> z ~~ 1o ) ) | 
						
							| 61 | 60 | impr |  |-  ( ( ph /\ ( z e. ( Y /. .~ ) /\ z e. ~P Z ) ) -> z ~~ 1o ) | 
						
							| 62 | 39 61 | sylan2b |  |-  ( ( ph /\ z e. ( ( Y /. .~ ) i^i ~P Z ) ) -> z ~~ 1o ) | 
						
							| 63 |  | en1b |  |-  ( z ~~ 1o <-> z = { U. z } ) | 
						
							| 64 | 62 63 | sylib |  |-  ( ( ph /\ z e. ( ( Y /. .~ ) i^i ~P Z ) ) -> z = { U. z } ) | 
						
							| 65 | 64 | fveq2d |  |-  ( ( ph /\ z e. ( ( Y /. .~ ) i^i ~P Z ) ) -> ( # ` z ) = ( # ` { U. z } ) ) | 
						
							| 66 |  | vuniex |  |-  U. z e. _V | 
						
							| 67 |  | hashsng |  |-  ( U. z e. _V -> ( # ` { U. z } ) = 1 ) | 
						
							| 68 | 66 67 | ax-mp |  |-  ( # ` { U. z } ) = 1 | 
						
							| 69 | 65 68 | eqtrdi |  |-  ( ( ph /\ z e. ( ( Y /. .~ ) i^i ~P Z ) ) -> ( # ` z ) = 1 ) | 
						
							| 70 | 69 | sumeq2dv |  |-  ( ph -> sum_ z e. ( ( Y /. .~ ) i^i ~P Z ) ( # ` z ) = sum_ z e. ( ( Y /. .~ ) i^i ~P Z ) 1 ) | 
						
							| 71 | 6 | ssrab3 |  |-  Z C_ Y | 
						
							| 72 |  | ssfi |  |-  ( ( Y e. Fin /\ Z C_ Y ) -> Z e. Fin ) | 
						
							| 73 | 5 71 72 | sylancl |  |-  ( ph -> Z e. Fin ) | 
						
							| 74 |  | hashcl |  |-  ( Z e. Fin -> ( # ` Z ) e. NN0 ) | 
						
							| 75 | 73 74 | syl |  |-  ( ph -> ( # ` Z ) e. NN0 ) | 
						
							| 76 | 75 | nn0cnd |  |-  ( ph -> ( # ` Z ) e. CC ) | 
						
							| 77 | 76 | mulridd |  |-  ( ph -> ( ( # ` Z ) x. 1 ) = ( # ` Z ) ) | 
						
							| 78 | 6 5 | rabexd |  |-  ( ph -> Z e. _V ) | 
						
							| 79 |  | eqid |  |-  ( w e. Z |-> { w } ) = ( w e. Z |-> { w } ) | 
						
							| 80 | 7 | relopabiv |  |-  Rel .~ | 
						
							| 81 |  | relssdmrn |  |-  ( Rel .~ -> .~ C_ ( dom .~ X. ran .~ ) ) | 
						
							| 82 | 80 81 | ax-mp |  |-  .~ C_ ( dom .~ X. ran .~ ) | 
						
							| 83 |  | erdm |  |-  ( .~ Er Y -> dom .~ = Y ) | 
						
							| 84 | 21 83 | syl |  |-  ( ph -> dom .~ = Y ) | 
						
							| 85 | 84 5 | eqeltrd |  |-  ( ph -> dom .~ e. Fin ) | 
						
							| 86 |  | errn |  |-  ( .~ Er Y -> ran .~ = Y ) | 
						
							| 87 | 21 86 | syl |  |-  ( ph -> ran .~ = Y ) | 
						
							| 88 | 87 5 | eqeltrd |  |-  ( ph -> ran .~ e. Fin ) | 
						
							| 89 | 85 88 | xpexd |  |-  ( ph -> ( dom .~ X. ran .~ ) e. _V ) | 
						
							| 90 |  | ssexg |  |-  ( ( .~ C_ ( dom .~ X. ran .~ ) /\ ( dom .~ X. ran .~ ) e. _V ) -> .~ e. _V ) | 
						
							| 91 | 82 89 90 | sylancr |  |-  ( ph -> .~ e. _V ) | 
						
							| 92 |  | simpr |  |-  ( ( ph /\ w e. Z ) -> w e. Z ) | 
						
							| 93 | 71 92 | sselid |  |-  ( ( ph /\ w e. Z ) -> w e. Y ) | 
						
							| 94 |  | ecelqsg |  |-  ( ( .~ e. _V /\ w e. Y ) -> [ w ] .~ e. ( Y /. .~ ) ) | 
						
							| 95 | 91 93 94 | syl2an2r |  |-  ( ( ph /\ w e. Z ) -> [ w ] .~ e. ( Y /. .~ ) ) | 
						
							| 96 | 54 95 | eqeltrrd |  |-  ( ( ph /\ w e. Z ) -> { w } e. ( Y /. .~ ) ) | 
						
							| 97 |  | snelpwi |  |-  ( w e. Z -> { w } e. ~P Z ) | 
						
							| 98 | 97 | adantl |  |-  ( ( ph /\ w e. Z ) -> { w } e. ~P Z ) | 
						
							| 99 | 96 98 | elind |  |-  ( ( ph /\ w e. Z ) -> { w } e. ( ( Y /. .~ ) i^i ~P Z ) ) | 
						
							| 100 |  | simpr |  |-  ( ( ph /\ z e. ( ( Y /. .~ ) i^i ~P Z ) ) -> z e. ( ( Y /. .~ ) i^i ~P Z ) ) | 
						
							| 101 | 100 | elin2d |  |-  ( ( ph /\ z e. ( ( Y /. .~ ) i^i ~P Z ) ) -> z e. ~P Z ) | 
						
							| 102 | 101 | elpwid |  |-  ( ( ph /\ z e. ( ( Y /. .~ ) i^i ~P Z ) ) -> z C_ Z ) | 
						
							| 103 | 64 102 | eqsstrrd |  |-  ( ( ph /\ z e. ( ( Y /. .~ ) i^i ~P Z ) ) -> { U. z } C_ Z ) | 
						
							| 104 | 66 | snss |  |-  ( U. z e. Z <-> { U. z } C_ Z ) | 
						
							| 105 | 103 104 | sylibr |  |-  ( ( ph /\ z e. ( ( Y /. .~ ) i^i ~P Z ) ) -> U. z e. Z ) | 
						
							| 106 |  | sneq |  |-  ( w = U. z -> { w } = { U. z } ) | 
						
							| 107 | 106 | eqeq2d |  |-  ( w = U. z -> ( z = { w } <-> z = { U. z } ) ) | 
						
							| 108 | 64 107 | syl5ibrcom |  |-  ( ( ph /\ z e. ( ( Y /. .~ ) i^i ~P Z ) ) -> ( w = U. z -> z = { w } ) ) | 
						
							| 109 | 108 | adantrl |  |-  ( ( ph /\ ( w e. Z /\ z e. ( ( Y /. .~ ) i^i ~P Z ) ) ) -> ( w = U. z -> z = { w } ) ) | 
						
							| 110 |  | unieq |  |-  ( z = { w } -> U. z = U. { w } ) | 
						
							| 111 |  | unisnv |  |-  U. { w } = w | 
						
							| 112 | 110 111 | eqtr2di |  |-  ( z = { w } -> w = U. z ) | 
						
							| 113 | 109 112 | impbid1 |  |-  ( ( ph /\ ( w e. Z /\ z e. ( ( Y /. .~ ) i^i ~P Z ) ) ) -> ( w = U. z <-> z = { w } ) ) | 
						
							| 114 | 79 99 105 113 | f1o2d |  |-  ( ph -> ( w e. Z |-> { w } ) : Z -1-1-onto-> ( ( Y /. .~ ) i^i ~P Z ) ) | 
						
							| 115 | 78 114 | hasheqf1od |  |-  ( ph -> ( # ` Z ) = ( # ` ( ( Y /. .~ ) i^i ~P Z ) ) ) | 
						
							| 116 | 115 | oveq1d |  |-  ( ph -> ( ( # ` Z ) x. 1 ) = ( ( # ` ( ( Y /. .~ ) i^i ~P Z ) ) x. 1 ) ) | 
						
							| 117 | 77 116 | eqtr3d |  |-  ( ph -> ( # ` Z ) = ( ( # ` ( ( Y /. .~ ) i^i ~P Z ) ) x. 1 ) ) | 
						
							| 118 | 38 70 117 | 3eqtr4rd |  |-  ( ph -> ( # ` Z ) = sum_ z e. ( ( Y /. .~ ) i^i ~P Z ) ( # ` z ) ) | 
						
							| 119 | 118 | oveq1d |  |-  ( ph -> ( ( # ` Z ) + sum_ z e. ( ( Y /. .~ ) \ ~P Z ) ( # ` z ) ) = ( sum_ z e. ( ( Y /. .~ ) i^i ~P Z ) ( # ` z ) + sum_ z e. ( ( Y /. .~ ) \ ~P Z ) ( # ` z ) ) ) | 
						
							| 120 | 31 32 119 | 3eqtr4rd |  |-  ( ph -> ( ( # ` Z ) + sum_ z e. ( ( Y /. .~ ) \ ~P Z ) ( # ` z ) ) = ( # ` Y ) ) | 
						
							| 121 |  | hashcl |  |-  ( Y e. Fin -> ( # ` Y ) e. NN0 ) | 
						
							| 122 | 5 121 | syl |  |-  ( ph -> ( # ` Y ) e. NN0 ) | 
						
							| 123 | 122 | nn0cnd |  |-  ( ph -> ( # ` Y ) e. CC ) | 
						
							| 124 |  | diffi |  |-  ( ( Y /. .~ ) e. Fin -> ( ( Y /. .~ ) \ ~P Z ) e. Fin ) | 
						
							| 125 | 23 124 | syl |  |-  ( ph -> ( ( Y /. .~ ) \ ~P Z ) e. Fin ) | 
						
							| 126 |  | eldifi |  |-  ( z e. ( ( Y /. .~ ) \ ~P Z ) -> z e. ( Y /. .~ ) ) | 
						
							| 127 | 126 30 | sylan2 |  |-  ( ( ph /\ z e. ( ( Y /. .~ ) \ ~P Z ) ) -> ( # ` z ) e. CC ) | 
						
							| 128 | 125 127 | fsumcl |  |-  ( ph -> sum_ z e. ( ( Y /. .~ ) \ ~P Z ) ( # ` z ) e. CC ) | 
						
							| 129 | 123 76 128 | subaddd |  |-  ( ph -> ( ( ( # ` Y ) - ( # ` Z ) ) = sum_ z e. ( ( Y /. .~ ) \ ~P Z ) ( # ` z ) <-> ( ( # ` Z ) + sum_ z e. ( ( Y /. .~ ) \ ~P Z ) ( # ` z ) ) = ( # ` Y ) ) ) | 
						
							| 130 | 120 129 | mpbird |  |-  ( ph -> ( ( # ` Y ) - ( # ` Z ) ) = sum_ z e. ( ( Y /. .~ ) \ ~P Z ) ( # ` z ) ) | 
						
							| 131 | 8 130 | breqtrrd |  |-  ( ph -> P || ( ( # ` Y ) - ( # ` Z ) ) ) |