| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sylow2b.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | sylow2b.xf |  |-  ( ph -> X e. Fin ) | 
						
							| 3 |  | sylow2b.h |  |-  ( ph -> H e. ( SubGrp ` G ) ) | 
						
							| 4 |  | sylow2b.k |  |-  ( ph -> K e. ( SubGrp ` G ) ) | 
						
							| 5 |  | sylow2b.a |  |-  .+ = ( +g ` G ) | 
						
							| 6 |  | sylow2b.r |  |-  .~ = ( G ~QG K ) | 
						
							| 7 |  | sylow2b.m |  |-  .x. = ( x e. H , y e. ( X /. .~ ) |-> ran ( z e. y |-> ( x .+ z ) ) ) | 
						
							| 8 |  | simp2 |  |-  ( ( ph /\ B e. H /\ C e. X ) -> B e. H ) | 
						
							| 9 | 6 | ovexi |  |-  .~ e. _V | 
						
							| 10 |  | simp3 |  |-  ( ( ph /\ B e. H /\ C e. X ) -> C e. X ) | 
						
							| 11 |  | ecelqsg |  |-  ( ( .~ e. _V /\ C e. X ) -> [ C ] .~ e. ( X /. .~ ) ) | 
						
							| 12 | 9 10 11 | sylancr |  |-  ( ( ph /\ B e. H /\ C e. X ) -> [ C ] .~ e. ( X /. .~ ) ) | 
						
							| 13 |  | simpr |  |-  ( ( x = B /\ y = [ C ] .~ ) -> y = [ C ] .~ ) | 
						
							| 14 |  | simpl |  |-  ( ( x = B /\ y = [ C ] .~ ) -> x = B ) | 
						
							| 15 | 14 | oveq1d |  |-  ( ( x = B /\ y = [ C ] .~ ) -> ( x .+ z ) = ( B .+ z ) ) | 
						
							| 16 | 13 15 | mpteq12dv |  |-  ( ( x = B /\ y = [ C ] .~ ) -> ( z e. y |-> ( x .+ z ) ) = ( z e. [ C ] .~ |-> ( B .+ z ) ) ) | 
						
							| 17 | 16 | rneqd |  |-  ( ( x = B /\ y = [ C ] .~ ) -> ran ( z e. y |-> ( x .+ z ) ) = ran ( z e. [ C ] .~ |-> ( B .+ z ) ) ) | 
						
							| 18 |  | ecexg |  |-  ( .~ e. _V -> [ C ] .~ e. _V ) | 
						
							| 19 | 9 18 | ax-mp |  |-  [ C ] .~ e. _V | 
						
							| 20 | 19 | mptex |  |-  ( z e. [ C ] .~ |-> ( B .+ z ) ) e. _V | 
						
							| 21 | 20 | rnex |  |-  ran ( z e. [ C ] .~ |-> ( B .+ z ) ) e. _V | 
						
							| 22 | 17 7 21 | ovmpoa |  |-  ( ( B e. H /\ [ C ] .~ e. ( X /. .~ ) ) -> ( B .x. [ C ] .~ ) = ran ( z e. [ C ] .~ |-> ( B .+ z ) ) ) | 
						
							| 23 | 8 12 22 | syl2anc |  |-  ( ( ph /\ B e. H /\ C e. X ) -> ( B .x. [ C ] .~ ) = ran ( z e. [ C ] .~ |-> ( B .+ z ) ) ) | 
						
							| 24 | 1 6 | eqger |  |-  ( K e. ( SubGrp ` G ) -> .~ Er X ) | 
						
							| 25 | 4 24 | syl |  |-  ( ph -> .~ Er X ) | 
						
							| 26 | 25 | ecss |  |-  ( ph -> [ ( B .+ C ) ] .~ C_ X ) | 
						
							| 27 | 2 26 | ssfid |  |-  ( ph -> [ ( B .+ C ) ] .~ e. Fin ) | 
						
							| 28 | 27 | 3ad2ant1 |  |-  ( ( ph /\ B e. H /\ C e. X ) -> [ ( B .+ C ) ] .~ e. Fin ) | 
						
							| 29 |  | vex |  |-  z e. _V | 
						
							| 30 |  | elecg |  |-  ( ( z e. _V /\ C e. X ) -> ( z e. [ C ] .~ <-> C .~ z ) ) | 
						
							| 31 | 29 10 30 | sylancr |  |-  ( ( ph /\ B e. H /\ C e. X ) -> ( z e. [ C ] .~ <-> C .~ z ) ) | 
						
							| 32 | 31 | biimpa |  |-  ( ( ( ph /\ B e. H /\ C e. X ) /\ z e. [ C ] .~ ) -> C .~ z ) | 
						
							| 33 |  | subgrcl |  |-  ( H e. ( SubGrp ` G ) -> G e. Grp ) | 
						
							| 34 | 3 33 | syl |  |-  ( ph -> G e. Grp ) | 
						
							| 35 | 34 | 3ad2ant1 |  |-  ( ( ph /\ B e. H /\ C e. X ) -> G e. Grp ) | 
						
							| 36 | 1 | subgss |  |-  ( H e. ( SubGrp ` G ) -> H C_ X ) | 
						
							| 37 | 3 36 | syl |  |-  ( ph -> H C_ X ) | 
						
							| 38 | 37 | 3ad2ant1 |  |-  ( ( ph /\ B e. H /\ C e. X ) -> H C_ X ) | 
						
							| 39 | 38 8 | sseldd |  |-  ( ( ph /\ B e. H /\ C e. X ) -> B e. X ) | 
						
							| 40 | 1 5 | grpcl |  |-  ( ( G e. Grp /\ B e. X /\ C e. X ) -> ( B .+ C ) e. X ) | 
						
							| 41 | 35 39 10 40 | syl3anc |  |-  ( ( ph /\ B e. H /\ C e. X ) -> ( B .+ C ) e. X ) | 
						
							| 42 | 41 | adantr |  |-  ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> ( B .+ C ) e. X ) | 
						
							| 43 | 35 | adantr |  |-  ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> G e. Grp ) | 
						
							| 44 | 39 | adantr |  |-  ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> B e. X ) | 
						
							| 45 | 1 | subgss |  |-  ( K e. ( SubGrp ` G ) -> K C_ X ) | 
						
							| 46 | 4 45 | syl |  |-  ( ph -> K C_ X ) | 
						
							| 47 |  | eqid |  |-  ( invg ` G ) = ( invg ` G ) | 
						
							| 48 | 1 47 5 6 | eqgval |  |-  ( ( G e. Grp /\ K C_ X ) -> ( C .~ z <-> ( C e. X /\ z e. X /\ ( ( ( invg ` G ) ` C ) .+ z ) e. K ) ) ) | 
						
							| 49 | 34 46 48 | syl2anc |  |-  ( ph -> ( C .~ z <-> ( C e. X /\ z e. X /\ ( ( ( invg ` G ) ` C ) .+ z ) e. K ) ) ) | 
						
							| 50 | 49 | 3ad2ant1 |  |-  ( ( ph /\ B e. H /\ C e. X ) -> ( C .~ z <-> ( C e. X /\ z e. X /\ ( ( ( invg ` G ) ` C ) .+ z ) e. K ) ) ) | 
						
							| 51 | 50 | biimpa |  |-  ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> ( C e. X /\ z e. X /\ ( ( ( invg ` G ) ` C ) .+ z ) e. K ) ) | 
						
							| 52 | 51 | simp2d |  |-  ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> z e. X ) | 
						
							| 53 | 1 5 | grpcl |  |-  ( ( G e. Grp /\ B e. X /\ z e. X ) -> ( B .+ z ) e. X ) | 
						
							| 54 | 43 44 52 53 | syl3anc |  |-  ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> ( B .+ z ) e. X ) | 
						
							| 55 | 1 47 | grpinvcl |  |-  ( ( G e. Grp /\ ( B .+ C ) e. X ) -> ( ( invg ` G ) ` ( B .+ C ) ) e. X ) | 
						
							| 56 | 35 41 55 | syl2anc |  |-  ( ( ph /\ B e. H /\ C e. X ) -> ( ( invg ` G ) ` ( B .+ C ) ) e. X ) | 
						
							| 57 | 56 | adantr |  |-  ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> ( ( invg ` G ) ` ( B .+ C ) ) e. X ) | 
						
							| 58 | 1 5 | grpass |  |-  ( ( G e. Grp /\ ( ( ( invg ` G ) ` ( B .+ C ) ) e. X /\ B e. X /\ z e. X ) ) -> ( ( ( ( invg ` G ) ` ( B .+ C ) ) .+ B ) .+ z ) = ( ( ( invg ` G ) ` ( B .+ C ) ) .+ ( B .+ z ) ) ) | 
						
							| 59 | 43 57 44 52 58 | syl13anc |  |-  ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> ( ( ( ( invg ` G ) ` ( B .+ C ) ) .+ B ) .+ z ) = ( ( ( invg ` G ) ` ( B .+ C ) ) .+ ( B .+ z ) ) ) | 
						
							| 60 | 1 5 47 | grpinvadd |  |-  ( ( G e. Grp /\ B e. X /\ C e. X ) -> ( ( invg ` G ) ` ( B .+ C ) ) = ( ( ( invg ` G ) ` C ) .+ ( ( invg ` G ) ` B ) ) ) | 
						
							| 61 | 35 39 10 60 | syl3anc |  |-  ( ( ph /\ B e. H /\ C e. X ) -> ( ( invg ` G ) ` ( B .+ C ) ) = ( ( ( invg ` G ) ` C ) .+ ( ( invg ` G ) ` B ) ) ) | 
						
							| 62 | 1 47 | grpinvcl |  |-  ( ( G e. Grp /\ C e. X ) -> ( ( invg ` G ) ` C ) e. X ) | 
						
							| 63 | 35 10 62 | syl2anc |  |-  ( ( ph /\ B e. H /\ C e. X ) -> ( ( invg ` G ) ` C ) e. X ) | 
						
							| 64 |  | eqid |  |-  ( -g ` G ) = ( -g ` G ) | 
						
							| 65 | 1 5 47 64 | grpsubval |  |-  ( ( ( ( invg ` G ) ` C ) e. X /\ B e. X ) -> ( ( ( invg ` G ) ` C ) ( -g ` G ) B ) = ( ( ( invg ` G ) ` C ) .+ ( ( invg ` G ) ` B ) ) ) | 
						
							| 66 | 63 39 65 | syl2anc |  |-  ( ( ph /\ B e. H /\ C e. X ) -> ( ( ( invg ` G ) ` C ) ( -g ` G ) B ) = ( ( ( invg ` G ) ` C ) .+ ( ( invg ` G ) ` B ) ) ) | 
						
							| 67 | 61 66 | eqtr4d |  |-  ( ( ph /\ B e. H /\ C e. X ) -> ( ( invg ` G ) ` ( B .+ C ) ) = ( ( ( invg ` G ) ` C ) ( -g ` G ) B ) ) | 
						
							| 68 | 67 | oveq1d |  |-  ( ( ph /\ B e. H /\ C e. X ) -> ( ( ( invg ` G ) ` ( B .+ C ) ) .+ B ) = ( ( ( ( invg ` G ) ` C ) ( -g ` G ) B ) .+ B ) ) | 
						
							| 69 | 1 5 64 | grpnpcan |  |-  ( ( G e. Grp /\ ( ( invg ` G ) ` C ) e. X /\ B e. X ) -> ( ( ( ( invg ` G ) ` C ) ( -g ` G ) B ) .+ B ) = ( ( invg ` G ) ` C ) ) | 
						
							| 70 | 35 63 39 69 | syl3anc |  |-  ( ( ph /\ B e. H /\ C e. X ) -> ( ( ( ( invg ` G ) ` C ) ( -g ` G ) B ) .+ B ) = ( ( invg ` G ) ` C ) ) | 
						
							| 71 | 68 70 | eqtrd |  |-  ( ( ph /\ B e. H /\ C e. X ) -> ( ( ( invg ` G ) ` ( B .+ C ) ) .+ B ) = ( ( invg ` G ) ` C ) ) | 
						
							| 72 | 71 | oveq1d |  |-  ( ( ph /\ B e. H /\ C e. X ) -> ( ( ( ( invg ` G ) ` ( B .+ C ) ) .+ B ) .+ z ) = ( ( ( invg ` G ) ` C ) .+ z ) ) | 
						
							| 73 | 72 | adantr |  |-  ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> ( ( ( ( invg ` G ) ` ( B .+ C ) ) .+ B ) .+ z ) = ( ( ( invg ` G ) ` C ) .+ z ) ) | 
						
							| 74 | 59 73 | eqtr3d |  |-  ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> ( ( ( invg ` G ) ` ( B .+ C ) ) .+ ( B .+ z ) ) = ( ( ( invg ` G ) ` C ) .+ z ) ) | 
						
							| 75 | 51 | simp3d |  |-  ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> ( ( ( invg ` G ) ` C ) .+ z ) e. K ) | 
						
							| 76 | 74 75 | eqeltrd |  |-  ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> ( ( ( invg ` G ) ` ( B .+ C ) ) .+ ( B .+ z ) ) e. K ) | 
						
							| 77 | 1 47 5 6 | eqgval |  |-  ( ( G e. Grp /\ K C_ X ) -> ( ( B .+ C ) .~ ( B .+ z ) <-> ( ( B .+ C ) e. X /\ ( B .+ z ) e. X /\ ( ( ( invg ` G ) ` ( B .+ C ) ) .+ ( B .+ z ) ) e. K ) ) ) | 
						
							| 78 | 34 46 77 | syl2anc |  |-  ( ph -> ( ( B .+ C ) .~ ( B .+ z ) <-> ( ( B .+ C ) e. X /\ ( B .+ z ) e. X /\ ( ( ( invg ` G ) ` ( B .+ C ) ) .+ ( B .+ z ) ) e. K ) ) ) | 
						
							| 79 | 78 | 3ad2ant1 |  |-  ( ( ph /\ B e. H /\ C e. X ) -> ( ( B .+ C ) .~ ( B .+ z ) <-> ( ( B .+ C ) e. X /\ ( B .+ z ) e. X /\ ( ( ( invg ` G ) ` ( B .+ C ) ) .+ ( B .+ z ) ) e. K ) ) ) | 
						
							| 80 | 79 | adantr |  |-  ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> ( ( B .+ C ) .~ ( B .+ z ) <-> ( ( B .+ C ) e. X /\ ( B .+ z ) e. X /\ ( ( ( invg ` G ) ` ( B .+ C ) ) .+ ( B .+ z ) ) e. K ) ) ) | 
						
							| 81 | 42 54 76 80 | mpbir3and |  |-  ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> ( B .+ C ) .~ ( B .+ z ) ) | 
						
							| 82 |  | ovex |  |-  ( B .+ z ) e. _V | 
						
							| 83 |  | ovex |  |-  ( B .+ C ) e. _V | 
						
							| 84 | 82 83 | elec |  |-  ( ( B .+ z ) e. [ ( B .+ C ) ] .~ <-> ( B .+ C ) .~ ( B .+ z ) ) | 
						
							| 85 | 81 84 | sylibr |  |-  ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> ( B .+ z ) e. [ ( B .+ C ) ] .~ ) | 
						
							| 86 | 32 85 | syldan |  |-  ( ( ( ph /\ B e. H /\ C e. X ) /\ z e. [ C ] .~ ) -> ( B .+ z ) e. [ ( B .+ C ) ] .~ ) | 
						
							| 87 | 86 | fmpttd |  |-  ( ( ph /\ B e. H /\ C e. X ) -> ( z e. [ C ] .~ |-> ( B .+ z ) ) : [ C ] .~ --> [ ( B .+ C ) ] .~ ) | 
						
							| 88 | 87 | frnd |  |-  ( ( ph /\ B e. H /\ C e. X ) -> ran ( z e. [ C ] .~ |-> ( B .+ z ) ) C_ [ ( B .+ C ) ] .~ ) | 
						
							| 89 |  | eqid |  |-  ( z e. X |-> ( B .+ z ) ) = ( z e. X |-> ( B .+ z ) ) | 
						
							| 90 | 1 5 89 | grplmulf1o |  |-  ( ( G e. Grp /\ B e. X ) -> ( z e. X |-> ( B .+ z ) ) : X -1-1-onto-> X ) | 
						
							| 91 | 35 39 90 | syl2anc |  |-  ( ( ph /\ B e. H /\ C e. X ) -> ( z e. X |-> ( B .+ z ) ) : X -1-1-onto-> X ) | 
						
							| 92 |  | f1of1 |  |-  ( ( z e. X |-> ( B .+ z ) ) : X -1-1-onto-> X -> ( z e. X |-> ( B .+ z ) ) : X -1-1-> X ) | 
						
							| 93 | 91 92 | syl |  |-  ( ( ph /\ B e. H /\ C e. X ) -> ( z e. X |-> ( B .+ z ) ) : X -1-1-> X ) | 
						
							| 94 | 25 | ecss |  |-  ( ph -> [ C ] .~ C_ X ) | 
						
							| 95 | 94 | 3ad2ant1 |  |-  ( ( ph /\ B e. H /\ C e. X ) -> [ C ] .~ C_ X ) | 
						
							| 96 |  | f1ssres |  |-  ( ( ( z e. X |-> ( B .+ z ) ) : X -1-1-> X /\ [ C ] .~ C_ X ) -> ( ( z e. X |-> ( B .+ z ) ) |` [ C ] .~ ) : [ C ] .~ -1-1-> X ) | 
						
							| 97 | 93 95 96 | syl2anc |  |-  ( ( ph /\ B e. H /\ C e. X ) -> ( ( z e. X |-> ( B .+ z ) ) |` [ C ] .~ ) : [ C ] .~ -1-1-> X ) | 
						
							| 98 |  | resmpt |  |-  ( [ C ] .~ C_ X -> ( ( z e. X |-> ( B .+ z ) ) |` [ C ] .~ ) = ( z e. [ C ] .~ |-> ( B .+ z ) ) ) | 
						
							| 99 |  | f1eq1 |  |-  ( ( ( z e. X |-> ( B .+ z ) ) |` [ C ] .~ ) = ( z e. [ C ] .~ |-> ( B .+ z ) ) -> ( ( ( z e. X |-> ( B .+ z ) ) |` [ C ] .~ ) : [ C ] .~ -1-1-> X <-> ( z e. [ C ] .~ |-> ( B .+ z ) ) : [ C ] .~ -1-1-> X ) ) | 
						
							| 100 | 95 98 99 | 3syl |  |-  ( ( ph /\ B e. H /\ C e. X ) -> ( ( ( z e. X |-> ( B .+ z ) ) |` [ C ] .~ ) : [ C ] .~ -1-1-> X <-> ( z e. [ C ] .~ |-> ( B .+ z ) ) : [ C ] .~ -1-1-> X ) ) | 
						
							| 101 | 97 100 | mpbid |  |-  ( ( ph /\ B e. H /\ C e. X ) -> ( z e. [ C ] .~ |-> ( B .+ z ) ) : [ C ] .~ -1-1-> X ) | 
						
							| 102 |  | f1f1orn |  |-  ( ( z e. [ C ] .~ |-> ( B .+ z ) ) : [ C ] .~ -1-1-> X -> ( z e. [ C ] .~ |-> ( B .+ z ) ) : [ C ] .~ -1-1-onto-> ran ( z e. [ C ] .~ |-> ( B .+ z ) ) ) | 
						
							| 103 | 101 102 | syl |  |-  ( ( ph /\ B e. H /\ C e. X ) -> ( z e. [ C ] .~ |-> ( B .+ z ) ) : [ C ] .~ -1-1-onto-> ran ( z e. [ C ] .~ |-> ( B .+ z ) ) ) | 
						
							| 104 | 19 | f1oen |  |-  ( ( z e. [ C ] .~ |-> ( B .+ z ) ) : [ C ] .~ -1-1-onto-> ran ( z e. [ C ] .~ |-> ( B .+ z ) ) -> [ C ] .~ ~~ ran ( z e. [ C ] .~ |-> ( B .+ z ) ) ) | 
						
							| 105 |  | ensym |  |-  ( [ C ] .~ ~~ ran ( z e. [ C ] .~ |-> ( B .+ z ) ) -> ran ( z e. [ C ] .~ |-> ( B .+ z ) ) ~~ [ C ] .~ ) | 
						
							| 106 | 103 104 105 | 3syl |  |-  ( ( ph /\ B e. H /\ C e. X ) -> ran ( z e. [ C ] .~ |-> ( B .+ z ) ) ~~ [ C ] .~ ) | 
						
							| 107 | 4 | 3ad2ant1 |  |-  ( ( ph /\ B e. H /\ C e. X ) -> K e. ( SubGrp ` G ) ) | 
						
							| 108 | 1 6 | eqgen |  |-  ( ( K e. ( SubGrp ` G ) /\ [ C ] .~ e. ( X /. .~ ) ) -> K ~~ [ C ] .~ ) | 
						
							| 109 | 107 12 108 | syl2anc |  |-  ( ( ph /\ B e. H /\ C e. X ) -> K ~~ [ C ] .~ ) | 
						
							| 110 |  | ensym |  |-  ( K ~~ [ C ] .~ -> [ C ] .~ ~~ K ) | 
						
							| 111 | 109 110 | syl |  |-  ( ( ph /\ B e. H /\ C e. X ) -> [ C ] .~ ~~ K ) | 
						
							| 112 |  | ecelqsg |  |-  ( ( .~ e. _V /\ ( B .+ C ) e. X ) -> [ ( B .+ C ) ] .~ e. ( X /. .~ ) ) | 
						
							| 113 | 9 41 112 | sylancr |  |-  ( ( ph /\ B e. H /\ C e. X ) -> [ ( B .+ C ) ] .~ e. ( X /. .~ ) ) | 
						
							| 114 | 1 6 | eqgen |  |-  ( ( K e. ( SubGrp ` G ) /\ [ ( B .+ C ) ] .~ e. ( X /. .~ ) ) -> K ~~ [ ( B .+ C ) ] .~ ) | 
						
							| 115 | 107 113 114 | syl2anc |  |-  ( ( ph /\ B e. H /\ C e. X ) -> K ~~ [ ( B .+ C ) ] .~ ) | 
						
							| 116 |  | entr |  |-  ( ( [ C ] .~ ~~ K /\ K ~~ [ ( B .+ C ) ] .~ ) -> [ C ] .~ ~~ [ ( B .+ C ) ] .~ ) | 
						
							| 117 | 111 115 116 | syl2anc |  |-  ( ( ph /\ B e. H /\ C e. X ) -> [ C ] .~ ~~ [ ( B .+ C ) ] .~ ) | 
						
							| 118 |  | entr |  |-  ( ( ran ( z e. [ C ] .~ |-> ( B .+ z ) ) ~~ [ C ] .~ /\ [ C ] .~ ~~ [ ( B .+ C ) ] .~ ) -> ran ( z e. [ C ] .~ |-> ( B .+ z ) ) ~~ [ ( B .+ C ) ] .~ ) | 
						
							| 119 | 106 117 118 | syl2anc |  |-  ( ( ph /\ B e. H /\ C e. X ) -> ran ( z e. [ C ] .~ |-> ( B .+ z ) ) ~~ [ ( B .+ C ) ] .~ ) | 
						
							| 120 |  | fisseneq |  |-  ( ( [ ( B .+ C ) ] .~ e. Fin /\ ran ( z e. [ C ] .~ |-> ( B .+ z ) ) C_ [ ( B .+ C ) ] .~ /\ ran ( z e. [ C ] .~ |-> ( B .+ z ) ) ~~ [ ( B .+ C ) ] .~ ) -> ran ( z e. [ C ] .~ |-> ( B .+ z ) ) = [ ( B .+ C ) ] .~ ) | 
						
							| 121 | 28 88 119 120 | syl3anc |  |-  ( ( ph /\ B e. H /\ C e. X ) -> ran ( z e. [ C ] .~ |-> ( B .+ z ) ) = [ ( B .+ C ) ] .~ ) | 
						
							| 122 | 23 121 | eqtrd |  |-  ( ( ph /\ B e. H /\ C e. X ) -> ( B .x. [ C ] .~ ) = [ ( B .+ C ) ] .~ ) |