| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sylow2b.x |
|- X = ( Base ` G ) |
| 2 |
|
sylow2b.xf |
|- ( ph -> X e. Fin ) |
| 3 |
|
sylow2b.h |
|- ( ph -> H e. ( SubGrp ` G ) ) |
| 4 |
|
sylow2b.k |
|- ( ph -> K e. ( SubGrp ` G ) ) |
| 5 |
|
sylow2b.a |
|- .+ = ( +g ` G ) |
| 6 |
|
sylow2b.r |
|- .~ = ( G ~QG K ) |
| 7 |
|
sylow2b.m |
|- .x. = ( x e. H , y e. ( X /. .~ ) |-> ran ( z e. y |-> ( x .+ z ) ) ) |
| 8 |
|
simp2 |
|- ( ( ph /\ B e. H /\ C e. X ) -> B e. H ) |
| 9 |
6
|
ovexi |
|- .~ e. _V |
| 10 |
|
simp3 |
|- ( ( ph /\ B e. H /\ C e. X ) -> C e. X ) |
| 11 |
|
ecelqsg |
|- ( ( .~ e. _V /\ C e. X ) -> [ C ] .~ e. ( X /. .~ ) ) |
| 12 |
9 10 11
|
sylancr |
|- ( ( ph /\ B e. H /\ C e. X ) -> [ C ] .~ e. ( X /. .~ ) ) |
| 13 |
|
simpr |
|- ( ( x = B /\ y = [ C ] .~ ) -> y = [ C ] .~ ) |
| 14 |
|
simpl |
|- ( ( x = B /\ y = [ C ] .~ ) -> x = B ) |
| 15 |
14
|
oveq1d |
|- ( ( x = B /\ y = [ C ] .~ ) -> ( x .+ z ) = ( B .+ z ) ) |
| 16 |
13 15
|
mpteq12dv |
|- ( ( x = B /\ y = [ C ] .~ ) -> ( z e. y |-> ( x .+ z ) ) = ( z e. [ C ] .~ |-> ( B .+ z ) ) ) |
| 17 |
16
|
rneqd |
|- ( ( x = B /\ y = [ C ] .~ ) -> ran ( z e. y |-> ( x .+ z ) ) = ran ( z e. [ C ] .~ |-> ( B .+ z ) ) ) |
| 18 |
|
ecexg |
|- ( .~ e. _V -> [ C ] .~ e. _V ) |
| 19 |
9 18
|
ax-mp |
|- [ C ] .~ e. _V |
| 20 |
19
|
mptex |
|- ( z e. [ C ] .~ |-> ( B .+ z ) ) e. _V |
| 21 |
20
|
rnex |
|- ran ( z e. [ C ] .~ |-> ( B .+ z ) ) e. _V |
| 22 |
17 7 21
|
ovmpoa |
|- ( ( B e. H /\ [ C ] .~ e. ( X /. .~ ) ) -> ( B .x. [ C ] .~ ) = ran ( z e. [ C ] .~ |-> ( B .+ z ) ) ) |
| 23 |
8 12 22
|
syl2anc |
|- ( ( ph /\ B e. H /\ C e. X ) -> ( B .x. [ C ] .~ ) = ran ( z e. [ C ] .~ |-> ( B .+ z ) ) ) |
| 24 |
1 6
|
eqger |
|- ( K e. ( SubGrp ` G ) -> .~ Er X ) |
| 25 |
4 24
|
syl |
|- ( ph -> .~ Er X ) |
| 26 |
25
|
ecss |
|- ( ph -> [ ( B .+ C ) ] .~ C_ X ) |
| 27 |
2 26
|
ssfid |
|- ( ph -> [ ( B .+ C ) ] .~ e. Fin ) |
| 28 |
27
|
3ad2ant1 |
|- ( ( ph /\ B e. H /\ C e. X ) -> [ ( B .+ C ) ] .~ e. Fin ) |
| 29 |
|
vex |
|- z e. _V |
| 30 |
|
elecg |
|- ( ( z e. _V /\ C e. X ) -> ( z e. [ C ] .~ <-> C .~ z ) ) |
| 31 |
29 10 30
|
sylancr |
|- ( ( ph /\ B e. H /\ C e. X ) -> ( z e. [ C ] .~ <-> C .~ z ) ) |
| 32 |
31
|
biimpa |
|- ( ( ( ph /\ B e. H /\ C e. X ) /\ z e. [ C ] .~ ) -> C .~ z ) |
| 33 |
|
subgrcl |
|- ( H e. ( SubGrp ` G ) -> G e. Grp ) |
| 34 |
3 33
|
syl |
|- ( ph -> G e. Grp ) |
| 35 |
34
|
3ad2ant1 |
|- ( ( ph /\ B e. H /\ C e. X ) -> G e. Grp ) |
| 36 |
1
|
subgss |
|- ( H e. ( SubGrp ` G ) -> H C_ X ) |
| 37 |
3 36
|
syl |
|- ( ph -> H C_ X ) |
| 38 |
37
|
3ad2ant1 |
|- ( ( ph /\ B e. H /\ C e. X ) -> H C_ X ) |
| 39 |
38 8
|
sseldd |
|- ( ( ph /\ B e. H /\ C e. X ) -> B e. X ) |
| 40 |
1 5
|
grpcl |
|- ( ( G e. Grp /\ B e. X /\ C e. X ) -> ( B .+ C ) e. X ) |
| 41 |
35 39 10 40
|
syl3anc |
|- ( ( ph /\ B e. H /\ C e. X ) -> ( B .+ C ) e. X ) |
| 42 |
41
|
adantr |
|- ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> ( B .+ C ) e. X ) |
| 43 |
35
|
adantr |
|- ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> G e. Grp ) |
| 44 |
39
|
adantr |
|- ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> B e. X ) |
| 45 |
1
|
subgss |
|- ( K e. ( SubGrp ` G ) -> K C_ X ) |
| 46 |
4 45
|
syl |
|- ( ph -> K C_ X ) |
| 47 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
| 48 |
1 47 5 6
|
eqgval |
|- ( ( G e. Grp /\ K C_ X ) -> ( C .~ z <-> ( C e. X /\ z e. X /\ ( ( ( invg ` G ) ` C ) .+ z ) e. K ) ) ) |
| 49 |
34 46 48
|
syl2anc |
|- ( ph -> ( C .~ z <-> ( C e. X /\ z e. X /\ ( ( ( invg ` G ) ` C ) .+ z ) e. K ) ) ) |
| 50 |
49
|
3ad2ant1 |
|- ( ( ph /\ B e. H /\ C e. X ) -> ( C .~ z <-> ( C e. X /\ z e. X /\ ( ( ( invg ` G ) ` C ) .+ z ) e. K ) ) ) |
| 51 |
50
|
biimpa |
|- ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> ( C e. X /\ z e. X /\ ( ( ( invg ` G ) ` C ) .+ z ) e. K ) ) |
| 52 |
51
|
simp2d |
|- ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> z e. X ) |
| 53 |
1 5
|
grpcl |
|- ( ( G e. Grp /\ B e. X /\ z e. X ) -> ( B .+ z ) e. X ) |
| 54 |
43 44 52 53
|
syl3anc |
|- ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> ( B .+ z ) e. X ) |
| 55 |
1 47
|
grpinvcl |
|- ( ( G e. Grp /\ ( B .+ C ) e. X ) -> ( ( invg ` G ) ` ( B .+ C ) ) e. X ) |
| 56 |
35 41 55
|
syl2anc |
|- ( ( ph /\ B e. H /\ C e. X ) -> ( ( invg ` G ) ` ( B .+ C ) ) e. X ) |
| 57 |
56
|
adantr |
|- ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> ( ( invg ` G ) ` ( B .+ C ) ) e. X ) |
| 58 |
1 5
|
grpass |
|- ( ( G e. Grp /\ ( ( ( invg ` G ) ` ( B .+ C ) ) e. X /\ B e. X /\ z e. X ) ) -> ( ( ( ( invg ` G ) ` ( B .+ C ) ) .+ B ) .+ z ) = ( ( ( invg ` G ) ` ( B .+ C ) ) .+ ( B .+ z ) ) ) |
| 59 |
43 57 44 52 58
|
syl13anc |
|- ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> ( ( ( ( invg ` G ) ` ( B .+ C ) ) .+ B ) .+ z ) = ( ( ( invg ` G ) ` ( B .+ C ) ) .+ ( B .+ z ) ) ) |
| 60 |
1 5 47
|
grpinvadd |
|- ( ( G e. Grp /\ B e. X /\ C e. X ) -> ( ( invg ` G ) ` ( B .+ C ) ) = ( ( ( invg ` G ) ` C ) .+ ( ( invg ` G ) ` B ) ) ) |
| 61 |
35 39 10 60
|
syl3anc |
|- ( ( ph /\ B e. H /\ C e. X ) -> ( ( invg ` G ) ` ( B .+ C ) ) = ( ( ( invg ` G ) ` C ) .+ ( ( invg ` G ) ` B ) ) ) |
| 62 |
1 47
|
grpinvcl |
|- ( ( G e. Grp /\ C e. X ) -> ( ( invg ` G ) ` C ) e. X ) |
| 63 |
35 10 62
|
syl2anc |
|- ( ( ph /\ B e. H /\ C e. X ) -> ( ( invg ` G ) ` C ) e. X ) |
| 64 |
|
eqid |
|- ( -g ` G ) = ( -g ` G ) |
| 65 |
1 5 47 64
|
grpsubval |
|- ( ( ( ( invg ` G ) ` C ) e. X /\ B e. X ) -> ( ( ( invg ` G ) ` C ) ( -g ` G ) B ) = ( ( ( invg ` G ) ` C ) .+ ( ( invg ` G ) ` B ) ) ) |
| 66 |
63 39 65
|
syl2anc |
|- ( ( ph /\ B e. H /\ C e. X ) -> ( ( ( invg ` G ) ` C ) ( -g ` G ) B ) = ( ( ( invg ` G ) ` C ) .+ ( ( invg ` G ) ` B ) ) ) |
| 67 |
61 66
|
eqtr4d |
|- ( ( ph /\ B e. H /\ C e. X ) -> ( ( invg ` G ) ` ( B .+ C ) ) = ( ( ( invg ` G ) ` C ) ( -g ` G ) B ) ) |
| 68 |
67
|
oveq1d |
|- ( ( ph /\ B e. H /\ C e. X ) -> ( ( ( invg ` G ) ` ( B .+ C ) ) .+ B ) = ( ( ( ( invg ` G ) ` C ) ( -g ` G ) B ) .+ B ) ) |
| 69 |
1 5 64
|
grpnpcan |
|- ( ( G e. Grp /\ ( ( invg ` G ) ` C ) e. X /\ B e. X ) -> ( ( ( ( invg ` G ) ` C ) ( -g ` G ) B ) .+ B ) = ( ( invg ` G ) ` C ) ) |
| 70 |
35 63 39 69
|
syl3anc |
|- ( ( ph /\ B e. H /\ C e. X ) -> ( ( ( ( invg ` G ) ` C ) ( -g ` G ) B ) .+ B ) = ( ( invg ` G ) ` C ) ) |
| 71 |
68 70
|
eqtrd |
|- ( ( ph /\ B e. H /\ C e. X ) -> ( ( ( invg ` G ) ` ( B .+ C ) ) .+ B ) = ( ( invg ` G ) ` C ) ) |
| 72 |
71
|
oveq1d |
|- ( ( ph /\ B e. H /\ C e. X ) -> ( ( ( ( invg ` G ) ` ( B .+ C ) ) .+ B ) .+ z ) = ( ( ( invg ` G ) ` C ) .+ z ) ) |
| 73 |
72
|
adantr |
|- ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> ( ( ( ( invg ` G ) ` ( B .+ C ) ) .+ B ) .+ z ) = ( ( ( invg ` G ) ` C ) .+ z ) ) |
| 74 |
59 73
|
eqtr3d |
|- ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> ( ( ( invg ` G ) ` ( B .+ C ) ) .+ ( B .+ z ) ) = ( ( ( invg ` G ) ` C ) .+ z ) ) |
| 75 |
51
|
simp3d |
|- ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> ( ( ( invg ` G ) ` C ) .+ z ) e. K ) |
| 76 |
74 75
|
eqeltrd |
|- ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> ( ( ( invg ` G ) ` ( B .+ C ) ) .+ ( B .+ z ) ) e. K ) |
| 77 |
1 47 5 6
|
eqgval |
|- ( ( G e. Grp /\ K C_ X ) -> ( ( B .+ C ) .~ ( B .+ z ) <-> ( ( B .+ C ) e. X /\ ( B .+ z ) e. X /\ ( ( ( invg ` G ) ` ( B .+ C ) ) .+ ( B .+ z ) ) e. K ) ) ) |
| 78 |
34 46 77
|
syl2anc |
|- ( ph -> ( ( B .+ C ) .~ ( B .+ z ) <-> ( ( B .+ C ) e. X /\ ( B .+ z ) e. X /\ ( ( ( invg ` G ) ` ( B .+ C ) ) .+ ( B .+ z ) ) e. K ) ) ) |
| 79 |
78
|
3ad2ant1 |
|- ( ( ph /\ B e. H /\ C e. X ) -> ( ( B .+ C ) .~ ( B .+ z ) <-> ( ( B .+ C ) e. X /\ ( B .+ z ) e. X /\ ( ( ( invg ` G ) ` ( B .+ C ) ) .+ ( B .+ z ) ) e. K ) ) ) |
| 80 |
79
|
adantr |
|- ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> ( ( B .+ C ) .~ ( B .+ z ) <-> ( ( B .+ C ) e. X /\ ( B .+ z ) e. X /\ ( ( ( invg ` G ) ` ( B .+ C ) ) .+ ( B .+ z ) ) e. K ) ) ) |
| 81 |
42 54 76 80
|
mpbir3and |
|- ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> ( B .+ C ) .~ ( B .+ z ) ) |
| 82 |
|
ovex |
|- ( B .+ z ) e. _V |
| 83 |
|
ovex |
|- ( B .+ C ) e. _V |
| 84 |
82 83
|
elec |
|- ( ( B .+ z ) e. [ ( B .+ C ) ] .~ <-> ( B .+ C ) .~ ( B .+ z ) ) |
| 85 |
81 84
|
sylibr |
|- ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> ( B .+ z ) e. [ ( B .+ C ) ] .~ ) |
| 86 |
32 85
|
syldan |
|- ( ( ( ph /\ B e. H /\ C e. X ) /\ z e. [ C ] .~ ) -> ( B .+ z ) e. [ ( B .+ C ) ] .~ ) |
| 87 |
86
|
fmpttd |
|- ( ( ph /\ B e. H /\ C e. X ) -> ( z e. [ C ] .~ |-> ( B .+ z ) ) : [ C ] .~ --> [ ( B .+ C ) ] .~ ) |
| 88 |
87
|
frnd |
|- ( ( ph /\ B e. H /\ C e. X ) -> ran ( z e. [ C ] .~ |-> ( B .+ z ) ) C_ [ ( B .+ C ) ] .~ ) |
| 89 |
|
eqid |
|- ( z e. X |-> ( B .+ z ) ) = ( z e. X |-> ( B .+ z ) ) |
| 90 |
1 5 89
|
grplmulf1o |
|- ( ( G e. Grp /\ B e. X ) -> ( z e. X |-> ( B .+ z ) ) : X -1-1-onto-> X ) |
| 91 |
35 39 90
|
syl2anc |
|- ( ( ph /\ B e. H /\ C e. X ) -> ( z e. X |-> ( B .+ z ) ) : X -1-1-onto-> X ) |
| 92 |
|
f1of1 |
|- ( ( z e. X |-> ( B .+ z ) ) : X -1-1-onto-> X -> ( z e. X |-> ( B .+ z ) ) : X -1-1-> X ) |
| 93 |
91 92
|
syl |
|- ( ( ph /\ B e. H /\ C e. X ) -> ( z e. X |-> ( B .+ z ) ) : X -1-1-> X ) |
| 94 |
25
|
ecss |
|- ( ph -> [ C ] .~ C_ X ) |
| 95 |
94
|
3ad2ant1 |
|- ( ( ph /\ B e. H /\ C e. X ) -> [ C ] .~ C_ X ) |
| 96 |
|
f1ssres |
|- ( ( ( z e. X |-> ( B .+ z ) ) : X -1-1-> X /\ [ C ] .~ C_ X ) -> ( ( z e. X |-> ( B .+ z ) ) |` [ C ] .~ ) : [ C ] .~ -1-1-> X ) |
| 97 |
93 95 96
|
syl2anc |
|- ( ( ph /\ B e. H /\ C e. X ) -> ( ( z e. X |-> ( B .+ z ) ) |` [ C ] .~ ) : [ C ] .~ -1-1-> X ) |
| 98 |
|
resmpt |
|- ( [ C ] .~ C_ X -> ( ( z e. X |-> ( B .+ z ) ) |` [ C ] .~ ) = ( z e. [ C ] .~ |-> ( B .+ z ) ) ) |
| 99 |
|
f1eq1 |
|- ( ( ( z e. X |-> ( B .+ z ) ) |` [ C ] .~ ) = ( z e. [ C ] .~ |-> ( B .+ z ) ) -> ( ( ( z e. X |-> ( B .+ z ) ) |` [ C ] .~ ) : [ C ] .~ -1-1-> X <-> ( z e. [ C ] .~ |-> ( B .+ z ) ) : [ C ] .~ -1-1-> X ) ) |
| 100 |
95 98 99
|
3syl |
|- ( ( ph /\ B e. H /\ C e. X ) -> ( ( ( z e. X |-> ( B .+ z ) ) |` [ C ] .~ ) : [ C ] .~ -1-1-> X <-> ( z e. [ C ] .~ |-> ( B .+ z ) ) : [ C ] .~ -1-1-> X ) ) |
| 101 |
97 100
|
mpbid |
|- ( ( ph /\ B e. H /\ C e. X ) -> ( z e. [ C ] .~ |-> ( B .+ z ) ) : [ C ] .~ -1-1-> X ) |
| 102 |
|
f1f1orn |
|- ( ( z e. [ C ] .~ |-> ( B .+ z ) ) : [ C ] .~ -1-1-> X -> ( z e. [ C ] .~ |-> ( B .+ z ) ) : [ C ] .~ -1-1-onto-> ran ( z e. [ C ] .~ |-> ( B .+ z ) ) ) |
| 103 |
101 102
|
syl |
|- ( ( ph /\ B e. H /\ C e. X ) -> ( z e. [ C ] .~ |-> ( B .+ z ) ) : [ C ] .~ -1-1-onto-> ran ( z e. [ C ] .~ |-> ( B .+ z ) ) ) |
| 104 |
19
|
f1oen |
|- ( ( z e. [ C ] .~ |-> ( B .+ z ) ) : [ C ] .~ -1-1-onto-> ran ( z e. [ C ] .~ |-> ( B .+ z ) ) -> [ C ] .~ ~~ ran ( z e. [ C ] .~ |-> ( B .+ z ) ) ) |
| 105 |
|
ensym |
|- ( [ C ] .~ ~~ ran ( z e. [ C ] .~ |-> ( B .+ z ) ) -> ran ( z e. [ C ] .~ |-> ( B .+ z ) ) ~~ [ C ] .~ ) |
| 106 |
103 104 105
|
3syl |
|- ( ( ph /\ B e. H /\ C e. X ) -> ran ( z e. [ C ] .~ |-> ( B .+ z ) ) ~~ [ C ] .~ ) |
| 107 |
4
|
3ad2ant1 |
|- ( ( ph /\ B e. H /\ C e. X ) -> K e. ( SubGrp ` G ) ) |
| 108 |
1 6
|
eqgen |
|- ( ( K e. ( SubGrp ` G ) /\ [ C ] .~ e. ( X /. .~ ) ) -> K ~~ [ C ] .~ ) |
| 109 |
107 12 108
|
syl2anc |
|- ( ( ph /\ B e. H /\ C e. X ) -> K ~~ [ C ] .~ ) |
| 110 |
|
ensym |
|- ( K ~~ [ C ] .~ -> [ C ] .~ ~~ K ) |
| 111 |
109 110
|
syl |
|- ( ( ph /\ B e. H /\ C e. X ) -> [ C ] .~ ~~ K ) |
| 112 |
|
ecelqsg |
|- ( ( .~ e. _V /\ ( B .+ C ) e. X ) -> [ ( B .+ C ) ] .~ e. ( X /. .~ ) ) |
| 113 |
9 41 112
|
sylancr |
|- ( ( ph /\ B e. H /\ C e. X ) -> [ ( B .+ C ) ] .~ e. ( X /. .~ ) ) |
| 114 |
1 6
|
eqgen |
|- ( ( K e. ( SubGrp ` G ) /\ [ ( B .+ C ) ] .~ e. ( X /. .~ ) ) -> K ~~ [ ( B .+ C ) ] .~ ) |
| 115 |
107 113 114
|
syl2anc |
|- ( ( ph /\ B e. H /\ C e. X ) -> K ~~ [ ( B .+ C ) ] .~ ) |
| 116 |
|
entr |
|- ( ( [ C ] .~ ~~ K /\ K ~~ [ ( B .+ C ) ] .~ ) -> [ C ] .~ ~~ [ ( B .+ C ) ] .~ ) |
| 117 |
111 115 116
|
syl2anc |
|- ( ( ph /\ B e. H /\ C e. X ) -> [ C ] .~ ~~ [ ( B .+ C ) ] .~ ) |
| 118 |
|
entr |
|- ( ( ran ( z e. [ C ] .~ |-> ( B .+ z ) ) ~~ [ C ] .~ /\ [ C ] .~ ~~ [ ( B .+ C ) ] .~ ) -> ran ( z e. [ C ] .~ |-> ( B .+ z ) ) ~~ [ ( B .+ C ) ] .~ ) |
| 119 |
106 117 118
|
syl2anc |
|- ( ( ph /\ B e. H /\ C e. X ) -> ran ( z e. [ C ] .~ |-> ( B .+ z ) ) ~~ [ ( B .+ C ) ] .~ ) |
| 120 |
|
fisseneq |
|- ( ( [ ( B .+ C ) ] .~ e. Fin /\ ran ( z e. [ C ] .~ |-> ( B .+ z ) ) C_ [ ( B .+ C ) ] .~ /\ ran ( z e. [ C ] .~ |-> ( B .+ z ) ) ~~ [ ( B .+ C ) ] .~ ) -> ran ( z e. [ C ] .~ |-> ( B .+ z ) ) = [ ( B .+ C ) ] .~ ) |
| 121 |
28 88 119 120
|
syl3anc |
|- ( ( ph /\ B e. H /\ C e. X ) -> ran ( z e. [ C ] .~ |-> ( B .+ z ) ) = [ ( B .+ C ) ] .~ ) |
| 122 |
23 121
|
eqtrd |
|- ( ( ph /\ B e. H /\ C e. X ) -> ( B .x. [ C ] .~ ) = [ ( B .+ C ) ] .~ ) |