| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sylow2b.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 2 |
|
sylow2b.xf |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 3 |
|
sylow2b.h |
⊢ ( 𝜑 → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 4 |
|
sylow2b.k |
⊢ ( 𝜑 → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 5 |
|
sylow2b.a |
⊢ + = ( +g ‘ 𝐺 ) |
| 6 |
|
sylow2b.r |
⊢ ∼ = ( 𝐺 ~QG 𝐾 ) |
| 7 |
|
sylow2b.m |
⊢ · = ( 𝑥 ∈ 𝐻 , 𝑦 ∈ ( 𝑋 / ∼ ) ↦ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) |
| 8 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → 𝐵 ∈ 𝐻 ) |
| 9 |
6
|
ovexi |
⊢ ∼ ∈ V |
| 10 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → 𝐶 ∈ 𝑋 ) |
| 11 |
|
ecelqsg |
⊢ ( ( ∼ ∈ V ∧ 𝐶 ∈ 𝑋 ) → [ 𝐶 ] ∼ ∈ ( 𝑋 / ∼ ) ) |
| 12 |
9 10 11
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → [ 𝐶 ] ∼ ∈ ( 𝑋 / ∼ ) ) |
| 13 |
|
simpr |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑦 = [ 𝐶 ] ∼ ) → 𝑦 = [ 𝐶 ] ∼ ) |
| 14 |
|
simpl |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑦 = [ 𝐶 ] ∼ ) → 𝑥 = 𝐵 ) |
| 15 |
14
|
oveq1d |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑦 = [ 𝐶 ] ∼ ) → ( 𝑥 + 𝑧 ) = ( 𝐵 + 𝑧 ) ) |
| 16 |
13 15
|
mpteq12dv |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑦 = [ 𝐶 ] ∼ ) → ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) = ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) ) |
| 17 |
16
|
rneqd |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑦 = [ 𝐶 ] ∼ ) → ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) = ran ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) ) |
| 18 |
|
ecexg |
⊢ ( ∼ ∈ V → [ 𝐶 ] ∼ ∈ V ) |
| 19 |
9 18
|
ax-mp |
⊢ [ 𝐶 ] ∼ ∈ V |
| 20 |
19
|
mptex |
⊢ ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) ∈ V |
| 21 |
20
|
rnex |
⊢ ran ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) ∈ V |
| 22 |
17 7 21
|
ovmpoa |
⊢ ( ( 𝐵 ∈ 𝐻 ∧ [ 𝐶 ] ∼ ∈ ( 𝑋 / ∼ ) ) → ( 𝐵 · [ 𝐶 ] ∼ ) = ran ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) ) |
| 23 |
8 12 22
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 · [ 𝐶 ] ∼ ) = ran ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) ) |
| 24 |
1 6
|
eqger |
⊢ ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → ∼ Er 𝑋 ) |
| 25 |
4 24
|
syl |
⊢ ( 𝜑 → ∼ Er 𝑋 ) |
| 26 |
25
|
ecss |
⊢ ( 𝜑 → [ ( 𝐵 + 𝐶 ) ] ∼ ⊆ 𝑋 ) |
| 27 |
2 26
|
ssfid |
⊢ ( 𝜑 → [ ( 𝐵 + 𝐶 ) ] ∼ ∈ Fin ) |
| 28 |
27
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → [ ( 𝐵 + 𝐶 ) ] ∼ ∈ Fin ) |
| 29 |
|
vex |
⊢ 𝑧 ∈ V |
| 30 |
|
elecg |
⊢ ( ( 𝑧 ∈ V ∧ 𝐶 ∈ 𝑋 ) → ( 𝑧 ∈ [ 𝐶 ] ∼ ↔ 𝐶 ∼ 𝑧 ) ) |
| 31 |
29 10 30
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( 𝑧 ∈ [ 𝐶 ] ∼ ↔ 𝐶 ∼ 𝑧 ) ) |
| 32 |
31
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑧 ∈ [ 𝐶 ] ∼ ) → 𝐶 ∼ 𝑧 ) |
| 33 |
|
subgrcl |
⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
| 34 |
3 33
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 35 |
34
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → 𝐺 ∈ Grp ) |
| 36 |
1
|
subgss |
⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 ⊆ 𝑋 ) |
| 37 |
3 36
|
syl |
⊢ ( 𝜑 → 𝐻 ⊆ 𝑋 ) |
| 38 |
37
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → 𝐻 ⊆ 𝑋 ) |
| 39 |
38 8
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → 𝐵 ∈ 𝑋 ) |
| 40 |
1 5
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 + 𝐶 ) ∈ 𝑋 ) |
| 41 |
35 39 10 40
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 + 𝐶 ) ∈ 𝑋 ) |
| 42 |
41
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝐶 ∼ 𝑧 ) → ( 𝐵 + 𝐶 ) ∈ 𝑋 ) |
| 43 |
35
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝐶 ∼ 𝑧 ) → 𝐺 ∈ Grp ) |
| 44 |
39
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝐶 ∼ 𝑧 ) → 𝐵 ∈ 𝑋 ) |
| 45 |
1
|
subgss |
⊢ ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → 𝐾 ⊆ 𝑋 ) |
| 46 |
4 45
|
syl |
⊢ ( 𝜑 → 𝐾 ⊆ 𝑋 ) |
| 47 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
| 48 |
1 47 5 6
|
eqgval |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐾 ⊆ 𝑋 ) → ( 𝐶 ∼ 𝑧 ↔ ( 𝐶 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) + 𝑧 ) ∈ 𝐾 ) ) ) |
| 49 |
34 46 48
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ∼ 𝑧 ↔ ( 𝐶 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) + 𝑧 ) ∈ 𝐾 ) ) ) |
| 50 |
49
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐶 ∼ 𝑧 ↔ ( 𝐶 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) + 𝑧 ) ∈ 𝐾 ) ) ) |
| 51 |
50
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝐶 ∼ 𝑧 ) → ( 𝐶 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) + 𝑧 ) ∈ 𝐾 ) ) |
| 52 |
51
|
simp2d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝐶 ∼ 𝑧 ) → 𝑧 ∈ 𝑋 ) |
| 53 |
1 5
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝐵 + 𝑧 ) ∈ 𝑋 ) |
| 54 |
43 44 52 53
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝐶 ∼ 𝑧 ) → ( 𝐵 + 𝑧 ) ∈ 𝑋 ) |
| 55 |
1 47
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐵 + 𝐶 ) ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) ∈ 𝑋 ) |
| 56 |
35 41 55
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) ∈ 𝑋 ) |
| 57 |
56
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝐶 ∼ 𝑧 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) ∈ 𝑋 ) |
| 58 |
1 5
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + 𝐵 ) + 𝑧 ) = ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + ( 𝐵 + 𝑧 ) ) ) |
| 59 |
43 57 44 52 58
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝐶 ∼ 𝑧 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + 𝐵 ) + 𝑧 ) = ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + ( 𝐵 + 𝑧 ) ) ) |
| 60 |
1 5 47
|
grpinvadd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) |
| 61 |
35 39 10 60
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) |
| 62 |
1 47
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐶 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ) |
| 63 |
35 10 62
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ) |
| 64 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
| 65 |
1 5 47 64
|
grpsubval |
⊢ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ( -g ‘ 𝐺 ) 𝐵 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) |
| 66 |
63 39 65
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ( -g ‘ 𝐺 ) 𝐵 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) |
| 67 |
61 66
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ( -g ‘ 𝐺 ) 𝐵 ) ) |
| 68 |
67
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + 𝐵 ) = ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ( -g ‘ 𝐺 ) 𝐵 ) + 𝐵 ) ) |
| 69 |
1 5 64
|
grpnpcan |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ( -g ‘ 𝐺 ) 𝐵 ) + 𝐵 ) = ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ) |
| 70 |
35 63 39 69
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ( -g ‘ 𝐺 ) 𝐵 ) + 𝐵 ) = ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ) |
| 71 |
68 70
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + 𝐵 ) = ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ) |
| 72 |
71
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + 𝐵 ) + 𝑧 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) + 𝑧 ) ) |
| 73 |
72
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝐶 ∼ 𝑧 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + 𝐵 ) + 𝑧 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) + 𝑧 ) ) |
| 74 |
59 73
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝐶 ∼ 𝑧 ) → ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + ( 𝐵 + 𝑧 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) + 𝑧 ) ) |
| 75 |
51
|
simp3d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝐶 ∼ 𝑧 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) + 𝑧 ) ∈ 𝐾 ) |
| 76 |
74 75
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝐶 ∼ 𝑧 ) → ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + ( 𝐵 + 𝑧 ) ) ∈ 𝐾 ) |
| 77 |
1 47 5 6
|
eqgval |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐾 ⊆ 𝑋 ) → ( ( 𝐵 + 𝐶 ) ∼ ( 𝐵 + 𝑧 ) ↔ ( ( 𝐵 + 𝐶 ) ∈ 𝑋 ∧ ( 𝐵 + 𝑧 ) ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + ( 𝐵 + 𝑧 ) ) ∈ 𝐾 ) ) ) |
| 78 |
34 46 77
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐵 + 𝐶 ) ∼ ( 𝐵 + 𝑧 ) ↔ ( ( 𝐵 + 𝐶 ) ∈ 𝑋 ∧ ( 𝐵 + 𝑧 ) ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + ( 𝐵 + 𝑧 ) ) ∈ 𝐾 ) ) ) |
| 79 |
78
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐵 + 𝐶 ) ∼ ( 𝐵 + 𝑧 ) ↔ ( ( 𝐵 + 𝐶 ) ∈ 𝑋 ∧ ( 𝐵 + 𝑧 ) ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + ( 𝐵 + 𝑧 ) ) ∈ 𝐾 ) ) ) |
| 80 |
79
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝐶 ∼ 𝑧 ) → ( ( 𝐵 + 𝐶 ) ∼ ( 𝐵 + 𝑧 ) ↔ ( ( 𝐵 + 𝐶 ) ∈ 𝑋 ∧ ( 𝐵 + 𝑧 ) ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 + 𝐶 ) ) + ( 𝐵 + 𝑧 ) ) ∈ 𝐾 ) ) ) |
| 81 |
42 54 76 80
|
mpbir3and |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝐶 ∼ 𝑧 ) → ( 𝐵 + 𝐶 ) ∼ ( 𝐵 + 𝑧 ) ) |
| 82 |
|
ovex |
⊢ ( 𝐵 + 𝑧 ) ∈ V |
| 83 |
|
ovex |
⊢ ( 𝐵 + 𝐶 ) ∈ V |
| 84 |
82 83
|
elec |
⊢ ( ( 𝐵 + 𝑧 ) ∈ [ ( 𝐵 + 𝐶 ) ] ∼ ↔ ( 𝐵 + 𝐶 ) ∼ ( 𝐵 + 𝑧 ) ) |
| 85 |
81 84
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝐶 ∼ 𝑧 ) → ( 𝐵 + 𝑧 ) ∈ [ ( 𝐵 + 𝐶 ) ] ∼ ) |
| 86 |
32 85
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝑧 ∈ [ 𝐶 ] ∼ ) → ( 𝐵 + 𝑧 ) ∈ [ ( 𝐵 + 𝐶 ) ] ∼ ) |
| 87 |
86
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) : [ 𝐶 ] ∼ ⟶ [ ( 𝐵 + 𝐶 ) ] ∼ ) |
| 88 |
87
|
frnd |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ran ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) ⊆ [ ( 𝐵 + 𝐶 ) ] ∼ ) |
| 89 |
|
eqid |
⊢ ( 𝑧 ∈ 𝑋 ↦ ( 𝐵 + 𝑧 ) ) = ( 𝑧 ∈ 𝑋 ↦ ( 𝐵 + 𝑧 ) ) |
| 90 |
1 5 89
|
grplmulf1o |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝐵 + 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 ) |
| 91 |
35 39 90
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝐵 + 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 ) |
| 92 |
|
f1of1 |
⊢ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝐵 + 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 → ( 𝑧 ∈ 𝑋 ↦ ( 𝐵 + 𝑧 ) ) : 𝑋 –1-1→ 𝑋 ) |
| 93 |
91 92
|
syl |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝐵 + 𝑧 ) ) : 𝑋 –1-1→ 𝑋 ) |
| 94 |
25
|
ecss |
⊢ ( 𝜑 → [ 𝐶 ] ∼ ⊆ 𝑋 ) |
| 95 |
94
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → [ 𝐶 ] ∼ ⊆ 𝑋 ) |
| 96 |
|
f1ssres |
⊢ ( ( ( 𝑧 ∈ 𝑋 ↦ ( 𝐵 + 𝑧 ) ) : 𝑋 –1-1→ 𝑋 ∧ [ 𝐶 ] ∼ ⊆ 𝑋 ) → ( ( 𝑧 ∈ 𝑋 ↦ ( 𝐵 + 𝑧 ) ) ↾ [ 𝐶 ] ∼ ) : [ 𝐶 ] ∼ –1-1→ 𝑋 ) |
| 97 |
93 95 96
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝑧 ∈ 𝑋 ↦ ( 𝐵 + 𝑧 ) ) ↾ [ 𝐶 ] ∼ ) : [ 𝐶 ] ∼ –1-1→ 𝑋 ) |
| 98 |
|
resmpt |
⊢ ( [ 𝐶 ] ∼ ⊆ 𝑋 → ( ( 𝑧 ∈ 𝑋 ↦ ( 𝐵 + 𝑧 ) ) ↾ [ 𝐶 ] ∼ ) = ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) ) |
| 99 |
|
f1eq1 |
⊢ ( ( ( 𝑧 ∈ 𝑋 ↦ ( 𝐵 + 𝑧 ) ) ↾ [ 𝐶 ] ∼ ) = ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) → ( ( ( 𝑧 ∈ 𝑋 ↦ ( 𝐵 + 𝑧 ) ) ↾ [ 𝐶 ] ∼ ) : [ 𝐶 ] ∼ –1-1→ 𝑋 ↔ ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) : [ 𝐶 ] ∼ –1-1→ 𝑋 ) ) |
| 100 |
95 98 99
|
3syl |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( ( ( 𝑧 ∈ 𝑋 ↦ ( 𝐵 + 𝑧 ) ) ↾ [ 𝐶 ] ∼ ) : [ 𝐶 ] ∼ –1-1→ 𝑋 ↔ ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) : [ 𝐶 ] ∼ –1-1→ 𝑋 ) ) |
| 101 |
97 100
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) : [ 𝐶 ] ∼ –1-1→ 𝑋 ) |
| 102 |
|
f1f1orn |
⊢ ( ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) : [ 𝐶 ] ∼ –1-1→ 𝑋 → ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) : [ 𝐶 ] ∼ –1-1-onto→ ran ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) ) |
| 103 |
101 102
|
syl |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) : [ 𝐶 ] ∼ –1-1-onto→ ran ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) ) |
| 104 |
19
|
f1oen |
⊢ ( ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) : [ 𝐶 ] ∼ –1-1-onto→ ran ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) → [ 𝐶 ] ∼ ≈ ran ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) ) |
| 105 |
|
ensym |
⊢ ( [ 𝐶 ] ∼ ≈ ran ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) → ran ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) ≈ [ 𝐶 ] ∼ ) |
| 106 |
103 104 105
|
3syl |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ran ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) ≈ [ 𝐶 ] ∼ ) |
| 107 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 108 |
1 6
|
eqgen |
⊢ ( ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ∧ [ 𝐶 ] ∼ ∈ ( 𝑋 / ∼ ) ) → 𝐾 ≈ [ 𝐶 ] ∼ ) |
| 109 |
107 12 108
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → 𝐾 ≈ [ 𝐶 ] ∼ ) |
| 110 |
|
ensym |
⊢ ( 𝐾 ≈ [ 𝐶 ] ∼ → [ 𝐶 ] ∼ ≈ 𝐾 ) |
| 111 |
109 110
|
syl |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → [ 𝐶 ] ∼ ≈ 𝐾 ) |
| 112 |
|
ecelqsg |
⊢ ( ( ∼ ∈ V ∧ ( 𝐵 + 𝐶 ) ∈ 𝑋 ) → [ ( 𝐵 + 𝐶 ) ] ∼ ∈ ( 𝑋 / ∼ ) ) |
| 113 |
9 41 112
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → [ ( 𝐵 + 𝐶 ) ] ∼ ∈ ( 𝑋 / ∼ ) ) |
| 114 |
1 6
|
eqgen |
⊢ ( ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ∧ [ ( 𝐵 + 𝐶 ) ] ∼ ∈ ( 𝑋 / ∼ ) ) → 𝐾 ≈ [ ( 𝐵 + 𝐶 ) ] ∼ ) |
| 115 |
107 113 114
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → 𝐾 ≈ [ ( 𝐵 + 𝐶 ) ] ∼ ) |
| 116 |
|
entr |
⊢ ( ( [ 𝐶 ] ∼ ≈ 𝐾 ∧ 𝐾 ≈ [ ( 𝐵 + 𝐶 ) ] ∼ ) → [ 𝐶 ] ∼ ≈ [ ( 𝐵 + 𝐶 ) ] ∼ ) |
| 117 |
111 115 116
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → [ 𝐶 ] ∼ ≈ [ ( 𝐵 + 𝐶 ) ] ∼ ) |
| 118 |
|
entr |
⊢ ( ( ran ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) ≈ [ 𝐶 ] ∼ ∧ [ 𝐶 ] ∼ ≈ [ ( 𝐵 + 𝐶 ) ] ∼ ) → ran ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) ≈ [ ( 𝐵 + 𝐶 ) ] ∼ ) |
| 119 |
106 117 118
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ran ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) ≈ [ ( 𝐵 + 𝐶 ) ] ∼ ) |
| 120 |
|
fisseneq |
⊢ ( ( [ ( 𝐵 + 𝐶 ) ] ∼ ∈ Fin ∧ ran ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) ⊆ [ ( 𝐵 + 𝐶 ) ] ∼ ∧ ran ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) ≈ [ ( 𝐵 + 𝐶 ) ] ∼ ) → ran ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) = [ ( 𝐵 + 𝐶 ) ] ∼ ) |
| 121 |
28 88 119 120
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ran ( 𝑧 ∈ [ 𝐶 ] ∼ ↦ ( 𝐵 + 𝑧 ) ) = [ ( 𝐵 + 𝐶 ) ] ∼ ) |
| 122 |
23 121
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝐻 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 · [ 𝐶 ] ∼ ) = [ ( 𝐵 + 𝐶 ) ] ∼ ) |