| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sylow2b.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | sylow2b.xf | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 3 |  | sylow2b.h | ⊢ ( 𝜑  →  𝐻  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 4 |  | sylow2b.k | ⊢ ( 𝜑  →  𝐾  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 5 |  | sylow2b.a | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 6 |  | sylow2b.r | ⊢  ∼   =  ( 𝐺  ~QG  𝐾 ) | 
						
							| 7 |  | sylow2b.m | ⊢  ·   =  ( 𝑥  ∈  𝐻 ,  𝑦  ∈  ( 𝑋  /   ∼  )  ↦  ran  ( 𝑧  ∈  𝑦  ↦  ( 𝑥  +  𝑧 ) ) ) | 
						
							| 8 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  𝐵  ∈  𝐻 ) | 
						
							| 9 | 6 | ovexi | ⊢  ∼   ∈  V | 
						
							| 10 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  𝐶  ∈  𝑋 ) | 
						
							| 11 |  | ecelqsg | ⊢ ( (  ∼   ∈  V  ∧  𝐶  ∈  𝑋 )  →  [ 𝐶 ]  ∼   ∈  ( 𝑋  /   ∼  ) ) | 
						
							| 12 | 9 10 11 | sylancr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  [ 𝐶 ]  ∼   ∈  ( 𝑋  /   ∼  ) ) | 
						
							| 13 |  | simpr | ⊢ ( ( 𝑥  =  𝐵  ∧  𝑦  =  [ 𝐶 ]  ∼  )  →  𝑦  =  [ 𝐶 ]  ∼  ) | 
						
							| 14 |  | simpl | ⊢ ( ( 𝑥  =  𝐵  ∧  𝑦  =  [ 𝐶 ]  ∼  )  →  𝑥  =  𝐵 ) | 
						
							| 15 | 14 | oveq1d | ⊢ ( ( 𝑥  =  𝐵  ∧  𝑦  =  [ 𝐶 ]  ∼  )  →  ( 𝑥  +  𝑧 )  =  ( 𝐵  +  𝑧 ) ) | 
						
							| 16 | 13 15 | mpteq12dv | ⊢ ( ( 𝑥  =  𝐵  ∧  𝑦  =  [ 𝐶 ]  ∼  )  →  ( 𝑧  ∈  𝑦  ↦  ( 𝑥  +  𝑧 ) )  =  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) ) ) | 
						
							| 17 | 16 | rneqd | ⊢ ( ( 𝑥  =  𝐵  ∧  𝑦  =  [ 𝐶 ]  ∼  )  →  ran  ( 𝑧  ∈  𝑦  ↦  ( 𝑥  +  𝑧 ) )  =  ran  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) ) ) | 
						
							| 18 |  | ecexg | ⊢ (  ∼   ∈  V  →  [ 𝐶 ]  ∼   ∈  V ) | 
						
							| 19 | 9 18 | ax-mp | ⊢ [ 𝐶 ]  ∼   ∈  V | 
						
							| 20 | 19 | mptex | ⊢ ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) )  ∈  V | 
						
							| 21 | 20 | rnex | ⊢ ran  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) )  ∈  V | 
						
							| 22 | 17 7 21 | ovmpoa | ⊢ ( ( 𝐵  ∈  𝐻  ∧  [ 𝐶 ]  ∼   ∈  ( 𝑋  /   ∼  ) )  →  ( 𝐵  ·  [ 𝐶 ]  ∼  )  =  ran  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) ) ) | 
						
							| 23 | 8 12 22 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( 𝐵  ·  [ 𝐶 ]  ∼  )  =  ran  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) ) ) | 
						
							| 24 | 1 6 | eqger | ⊢ ( 𝐾  ∈  ( SubGrp ‘ 𝐺 )  →   ∼   Er  𝑋 ) | 
						
							| 25 | 4 24 | syl | ⊢ ( 𝜑  →   ∼   Er  𝑋 ) | 
						
							| 26 | 25 | ecss | ⊢ ( 𝜑  →  [ ( 𝐵  +  𝐶 ) ]  ∼   ⊆  𝑋 ) | 
						
							| 27 | 2 26 | ssfid | ⊢ ( 𝜑  →  [ ( 𝐵  +  𝐶 ) ]  ∼   ∈  Fin ) | 
						
							| 28 | 27 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  [ ( 𝐵  +  𝐶 ) ]  ∼   ∈  Fin ) | 
						
							| 29 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 30 |  | elecg | ⊢ ( ( 𝑧  ∈  V  ∧  𝐶  ∈  𝑋 )  →  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↔  𝐶  ∼  𝑧 ) ) | 
						
							| 31 | 29 10 30 | sylancr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↔  𝐶  ∼  𝑧 ) ) | 
						
							| 32 | 31 | biimpa | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  ∧  𝑧  ∈  [ 𝐶 ]  ∼  )  →  𝐶  ∼  𝑧 ) | 
						
							| 33 |  | subgrcl | ⊢ ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  →  𝐺  ∈  Grp ) | 
						
							| 34 | 3 33 | syl | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 35 | 34 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  𝐺  ∈  Grp ) | 
						
							| 36 | 1 | subgss | ⊢ ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  →  𝐻  ⊆  𝑋 ) | 
						
							| 37 | 3 36 | syl | ⊢ ( 𝜑  →  𝐻  ⊆  𝑋 ) | 
						
							| 38 | 37 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  𝐻  ⊆  𝑋 ) | 
						
							| 39 | 38 8 | sseldd | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  𝐵  ∈  𝑋 ) | 
						
							| 40 | 1 5 | grpcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( 𝐵  +  𝐶 )  ∈  𝑋 ) | 
						
							| 41 | 35 39 10 40 | syl3anc | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( 𝐵  +  𝐶 )  ∈  𝑋 ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  ∧  𝐶  ∼  𝑧 )  →  ( 𝐵  +  𝐶 )  ∈  𝑋 ) | 
						
							| 43 | 35 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  ∧  𝐶  ∼  𝑧 )  →  𝐺  ∈  Grp ) | 
						
							| 44 | 39 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  ∧  𝐶  ∼  𝑧 )  →  𝐵  ∈  𝑋 ) | 
						
							| 45 | 1 | subgss | ⊢ ( 𝐾  ∈  ( SubGrp ‘ 𝐺 )  →  𝐾  ⊆  𝑋 ) | 
						
							| 46 | 4 45 | syl | ⊢ ( 𝜑  →  𝐾  ⊆  𝑋 ) | 
						
							| 47 |  | eqid | ⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 ) | 
						
							| 48 | 1 47 5 6 | eqgval | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐾  ⊆  𝑋 )  →  ( 𝐶  ∼  𝑧  ↔  ( 𝐶  ∈  𝑋  ∧  𝑧  ∈  𝑋  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 )  +  𝑧 )  ∈  𝐾 ) ) ) | 
						
							| 49 | 34 46 48 | syl2anc | ⊢ ( 𝜑  →  ( 𝐶  ∼  𝑧  ↔  ( 𝐶  ∈  𝑋  ∧  𝑧  ∈  𝑋  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 )  +  𝑧 )  ∈  𝐾 ) ) ) | 
						
							| 50 | 49 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( 𝐶  ∼  𝑧  ↔  ( 𝐶  ∈  𝑋  ∧  𝑧  ∈  𝑋  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 )  +  𝑧 )  ∈  𝐾 ) ) ) | 
						
							| 51 | 50 | biimpa | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  ∧  𝐶  ∼  𝑧 )  →  ( 𝐶  ∈  𝑋  ∧  𝑧  ∈  𝑋  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 )  +  𝑧 )  ∈  𝐾 ) ) | 
						
							| 52 | 51 | simp2d | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  ∧  𝐶  ∼  𝑧 )  →  𝑧  ∈  𝑋 ) | 
						
							| 53 | 1 5 | grpcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  →  ( 𝐵  +  𝑧 )  ∈  𝑋 ) | 
						
							| 54 | 43 44 52 53 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  ∧  𝐶  ∼  𝑧 )  →  ( 𝐵  +  𝑧 )  ∈  𝑋 ) | 
						
							| 55 | 1 47 | grpinvcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝐵  +  𝐶 )  ∈  𝑋 )  →  ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  ∈  𝑋 ) | 
						
							| 56 | 35 41 55 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  ∈  𝑋 ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  ∧  𝐶  ∼  𝑧 )  →  ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  ∈  𝑋 ) | 
						
							| 58 | 1 5 | grpass | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  +  𝐵 )  +  𝑧 )  =  ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  +  ( 𝐵  +  𝑧 ) ) ) | 
						
							| 59 | 43 57 44 52 58 | syl13anc | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  ∧  𝐶  ∼  𝑧 )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  +  𝐵 )  +  𝑧 )  =  ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  +  ( 𝐵  +  𝑧 ) ) ) | 
						
							| 60 | 1 5 47 | grpinvadd | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 )  +  ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) | 
						
							| 61 | 35 39 10 60 | syl3anc | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 )  +  ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) | 
						
							| 62 | 1 47 | grpinvcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐶  ∈  𝑋 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝐶 )  ∈  𝑋 ) | 
						
							| 63 | 35 10 62 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝐶 )  ∈  𝑋 ) | 
						
							| 64 |  | eqid | ⊢ ( -g ‘ 𝐺 )  =  ( -g ‘ 𝐺 ) | 
						
							| 65 | 1 5 47 64 | grpsubval | ⊢ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 )  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ( -g ‘ 𝐺 ) 𝐵 )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 )  +  ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) | 
						
							| 66 | 63 39 65 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ( -g ‘ 𝐺 ) 𝐵 )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 )  +  ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) | 
						
							| 67 | 61 66 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ( -g ‘ 𝐺 ) 𝐵 ) ) | 
						
							| 68 | 67 | oveq1d | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  +  𝐵 )  =  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ( -g ‘ 𝐺 ) 𝐵 )  +  𝐵 ) ) | 
						
							| 69 | 1 5 64 | grpnpcan | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ( invg ‘ 𝐺 ) ‘ 𝐶 )  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ( -g ‘ 𝐺 ) 𝐵 )  +  𝐵 )  =  ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ) | 
						
							| 70 | 35 63 39 69 | syl3anc | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ( -g ‘ 𝐺 ) 𝐵 )  +  𝐵 )  =  ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ) | 
						
							| 71 | 68 70 | eqtrd | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  +  𝐵 )  =  ( ( invg ‘ 𝐺 ) ‘ 𝐶 ) ) | 
						
							| 72 | 71 | oveq1d | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  +  𝐵 )  +  𝑧 )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 )  +  𝑧 ) ) | 
						
							| 73 | 72 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  ∧  𝐶  ∼  𝑧 )  →  ( ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  +  𝐵 )  +  𝑧 )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 )  +  𝑧 ) ) | 
						
							| 74 | 59 73 | eqtr3d | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  ∧  𝐶  ∼  𝑧 )  →  ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  +  ( 𝐵  +  𝑧 ) )  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 )  +  𝑧 ) ) | 
						
							| 75 | 51 | simp3d | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  ∧  𝐶  ∼  𝑧 )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝐶 )  +  𝑧 )  ∈  𝐾 ) | 
						
							| 76 | 74 75 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  ∧  𝐶  ∼  𝑧 )  →  ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  +  ( 𝐵  +  𝑧 ) )  ∈  𝐾 ) | 
						
							| 77 | 1 47 5 6 | eqgval | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐾  ⊆  𝑋 )  →  ( ( 𝐵  +  𝐶 )  ∼  ( 𝐵  +  𝑧 )  ↔  ( ( 𝐵  +  𝐶 )  ∈  𝑋  ∧  ( 𝐵  +  𝑧 )  ∈  𝑋  ∧  ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  +  ( 𝐵  +  𝑧 ) )  ∈  𝐾 ) ) ) | 
						
							| 78 | 34 46 77 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐵  +  𝐶 )  ∼  ( 𝐵  +  𝑧 )  ↔  ( ( 𝐵  +  𝐶 )  ∈  𝑋  ∧  ( 𝐵  +  𝑧 )  ∈  𝑋  ∧  ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  +  ( 𝐵  +  𝑧 ) )  ∈  𝐾 ) ) ) | 
						
							| 79 | 78 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( ( 𝐵  +  𝐶 )  ∼  ( 𝐵  +  𝑧 )  ↔  ( ( 𝐵  +  𝐶 )  ∈  𝑋  ∧  ( 𝐵  +  𝑧 )  ∈  𝑋  ∧  ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  +  ( 𝐵  +  𝑧 ) )  ∈  𝐾 ) ) ) | 
						
							| 80 | 79 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  ∧  𝐶  ∼  𝑧 )  →  ( ( 𝐵  +  𝐶 )  ∼  ( 𝐵  +  𝑧 )  ↔  ( ( 𝐵  +  𝐶 )  ∈  𝑋  ∧  ( 𝐵  +  𝑧 )  ∈  𝑋  ∧  ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐵  +  𝐶 ) )  +  ( 𝐵  +  𝑧 ) )  ∈  𝐾 ) ) ) | 
						
							| 81 | 42 54 76 80 | mpbir3and | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  ∧  𝐶  ∼  𝑧 )  →  ( 𝐵  +  𝐶 )  ∼  ( 𝐵  +  𝑧 ) ) | 
						
							| 82 |  | ovex | ⊢ ( 𝐵  +  𝑧 )  ∈  V | 
						
							| 83 |  | ovex | ⊢ ( 𝐵  +  𝐶 )  ∈  V | 
						
							| 84 | 82 83 | elec | ⊢ ( ( 𝐵  +  𝑧 )  ∈  [ ( 𝐵  +  𝐶 ) ]  ∼   ↔  ( 𝐵  +  𝐶 )  ∼  ( 𝐵  +  𝑧 ) ) | 
						
							| 85 | 81 84 | sylibr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  ∧  𝐶  ∼  𝑧 )  →  ( 𝐵  +  𝑧 )  ∈  [ ( 𝐵  +  𝐶 ) ]  ∼  ) | 
						
							| 86 | 32 85 | syldan | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  ∧  𝑧  ∈  [ 𝐶 ]  ∼  )  →  ( 𝐵  +  𝑧 )  ∈  [ ( 𝐵  +  𝐶 ) ]  ∼  ) | 
						
							| 87 | 86 | fmpttd | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) ) : [ 𝐶 ]  ∼  ⟶ [ ( 𝐵  +  𝐶 ) ]  ∼  ) | 
						
							| 88 | 87 | frnd | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ran  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) )  ⊆  [ ( 𝐵  +  𝐶 ) ]  ∼  ) | 
						
							| 89 |  | eqid | ⊢ ( 𝑧  ∈  𝑋  ↦  ( 𝐵  +  𝑧 ) )  =  ( 𝑧  ∈  𝑋  ↦  ( 𝐵  +  𝑧 ) ) | 
						
							| 90 | 1 5 89 | grplmulf1o | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  𝑋 )  →  ( 𝑧  ∈  𝑋  ↦  ( 𝐵  +  𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 ) | 
						
							| 91 | 35 39 90 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( 𝑧  ∈  𝑋  ↦  ( 𝐵  +  𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 ) | 
						
							| 92 |  | f1of1 | ⊢ ( ( 𝑧  ∈  𝑋  ↦  ( 𝐵  +  𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋  →  ( 𝑧  ∈  𝑋  ↦  ( 𝐵  +  𝑧 ) ) : 𝑋 –1-1→ 𝑋 ) | 
						
							| 93 | 91 92 | syl | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( 𝑧  ∈  𝑋  ↦  ( 𝐵  +  𝑧 ) ) : 𝑋 –1-1→ 𝑋 ) | 
						
							| 94 | 25 | ecss | ⊢ ( 𝜑  →  [ 𝐶 ]  ∼   ⊆  𝑋 ) | 
						
							| 95 | 94 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  [ 𝐶 ]  ∼   ⊆  𝑋 ) | 
						
							| 96 |  | f1ssres | ⊢ ( ( ( 𝑧  ∈  𝑋  ↦  ( 𝐵  +  𝑧 ) ) : 𝑋 –1-1→ 𝑋  ∧  [ 𝐶 ]  ∼   ⊆  𝑋 )  →  ( ( 𝑧  ∈  𝑋  ↦  ( 𝐵  +  𝑧 ) )  ↾  [ 𝐶 ]  ∼  ) : [ 𝐶 ]  ∼  –1-1→ 𝑋 ) | 
						
							| 97 | 93 95 96 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( ( 𝑧  ∈  𝑋  ↦  ( 𝐵  +  𝑧 ) )  ↾  [ 𝐶 ]  ∼  ) : [ 𝐶 ]  ∼  –1-1→ 𝑋 ) | 
						
							| 98 |  | resmpt | ⊢ ( [ 𝐶 ]  ∼   ⊆  𝑋  →  ( ( 𝑧  ∈  𝑋  ↦  ( 𝐵  +  𝑧 ) )  ↾  [ 𝐶 ]  ∼  )  =  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) ) ) | 
						
							| 99 |  | f1eq1 | ⊢ ( ( ( 𝑧  ∈  𝑋  ↦  ( 𝐵  +  𝑧 ) )  ↾  [ 𝐶 ]  ∼  )  =  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) )  →  ( ( ( 𝑧  ∈  𝑋  ↦  ( 𝐵  +  𝑧 ) )  ↾  [ 𝐶 ]  ∼  ) : [ 𝐶 ]  ∼  –1-1→ 𝑋  ↔  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) ) : [ 𝐶 ]  ∼  –1-1→ 𝑋 ) ) | 
						
							| 100 | 95 98 99 | 3syl | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( ( ( 𝑧  ∈  𝑋  ↦  ( 𝐵  +  𝑧 ) )  ↾  [ 𝐶 ]  ∼  ) : [ 𝐶 ]  ∼  –1-1→ 𝑋  ↔  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) ) : [ 𝐶 ]  ∼  –1-1→ 𝑋 ) ) | 
						
							| 101 | 97 100 | mpbid | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) ) : [ 𝐶 ]  ∼  –1-1→ 𝑋 ) | 
						
							| 102 |  | f1f1orn | ⊢ ( ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) ) : [ 𝐶 ]  ∼  –1-1→ 𝑋  →  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) ) : [ 𝐶 ]  ∼  –1-1-onto→ ran  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) ) ) | 
						
							| 103 | 101 102 | syl | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) ) : [ 𝐶 ]  ∼  –1-1-onto→ ran  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) ) ) | 
						
							| 104 | 19 | f1oen | ⊢ ( ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) ) : [ 𝐶 ]  ∼  –1-1-onto→ ran  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) )  →  [ 𝐶 ]  ∼   ≈  ran  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) ) ) | 
						
							| 105 |  | ensym | ⊢ ( [ 𝐶 ]  ∼   ≈  ran  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) )  →  ran  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) )  ≈  [ 𝐶 ]  ∼  ) | 
						
							| 106 | 103 104 105 | 3syl | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ran  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) )  ≈  [ 𝐶 ]  ∼  ) | 
						
							| 107 | 4 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  𝐾  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 108 | 1 6 | eqgen | ⊢ ( ( 𝐾  ∈  ( SubGrp ‘ 𝐺 )  ∧  [ 𝐶 ]  ∼   ∈  ( 𝑋  /   ∼  ) )  →  𝐾  ≈  [ 𝐶 ]  ∼  ) | 
						
							| 109 | 107 12 108 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  𝐾  ≈  [ 𝐶 ]  ∼  ) | 
						
							| 110 |  | ensym | ⊢ ( 𝐾  ≈  [ 𝐶 ]  ∼   →  [ 𝐶 ]  ∼   ≈  𝐾 ) | 
						
							| 111 | 109 110 | syl | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  [ 𝐶 ]  ∼   ≈  𝐾 ) | 
						
							| 112 |  | ecelqsg | ⊢ ( (  ∼   ∈  V  ∧  ( 𝐵  +  𝐶 )  ∈  𝑋 )  →  [ ( 𝐵  +  𝐶 ) ]  ∼   ∈  ( 𝑋  /   ∼  ) ) | 
						
							| 113 | 9 41 112 | sylancr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  [ ( 𝐵  +  𝐶 ) ]  ∼   ∈  ( 𝑋  /   ∼  ) ) | 
						
							| 114 | 1 6 | eqgen | ⊢ ( ( 𝐾  ∈  ( SubGrp ‘ 𝐺 )  ∧  [ ( 𝐵  +  𝐶 ) ]  ∼   ∈  ( 𝑋  /   ∼  ) )  →  𝐾  ≈  [ ( 𝐵  +  𝐶 ) ]  ∼  ) | 
						
							| 115 | 107 113 114 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  𝐾  ≈  [ ( 𝐵  +  𝐶 ) ]  ∼  ) | 
						
							| 116 |  | entr | ⊢ ( ( [ 𝐶 ]  ∼   ≈  𝐾  ∧  𝐾  ≈  [ ( 𝐵  +  𝐶 ) ]  ∼  )  →  [ 𝐶 ]  ∼   ≈  [ ( 𝐵  +  𝐶 ) ]  ∼  ) | 
						
							| 117 | 111 115 116 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  [ 𝐶 ]  ∼   ≈  [ ( 𝐵  +  𝐶 ) ]  ∼  ) | 
						
							| 118 |  | entr | ⊢ ( ( ran  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) )  ≈  [ 𝐶 ]  ∼   ∧  [ 𝐶 ]  ∼   ≈  [ ( 𝐵  +  𝐶 ) ]  ∼  )  →  ran  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) )  ≈  [ ( 𝐵  +  𝐶 ) ]  ∼  ) | 
						
							| 119 | 106 117 118 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ran  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) )  ≈  [ ( 𝐵  +  𝐶 ) ]  ∼  ) | 
						
							| 120 |  | fisseneq | ⊢ ( ( [ ( 𝐵  +  𝐶 ) ]  ∼   ∈  Fin  ∧  ran  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) )  ⊆  [ ( 𝐵  +  𝐶 ) ]  ∼   ∧  ran  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) )  ≈  [ ( 𝐵  +  𝐶 ) ]  ∼  )  →  ran  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) )  =  [ ( 𝐵  +  𝐶 ) ]  ∼  ) | 
						
							| 121 | 28 88 119 120 | syl3anc | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ran  ( 𝑧  ∈  [ 𝐶 ]  ∼   ↦  ( 𝐵  +  𝑧 ) )  =  [ ( 𝐵  +  𝐶 ) ]  ∼  ) | 
						
							| 122 | 23 121 | eqtrd | ⊢ ( ( 𝜑  ∧  𝐵  ∈  𝐻  ∧  𝐶  ∈  𝑋 )  →  ( 𝐵  ·  [ 𝐶 ]  ∼  )  =  [ ( 𝐵  +  𝐶 ) ]  ∼  ) |