| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sylow2b.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 2 |
|
sylow2b.xf |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 3 |
|
sylow2b.h |
⊢ ( 𝜑 → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 4 |
|
sylow2b.k |
⊢ ( 𝜑 → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 5 |
|
sylow2b.a |
⊢ + = ( +g ‘ 𝐺 ) |
| 6 |
|
sylow2b.r |
⊢ ∼ = ( 𝐺 ~QG 𝐾 ) |
| 7 |
|
sylow2b.m |
⊢ · = ( 𝑥 ∈ 𝐻 , 𝑦 ∈ ( 𝑋 / ∼ ) ↦ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) |
| 8 |
|
eqid |
⊢ ( 𝐺 ↾s 𝐻 ) = ( 𝐺 ↾s 𝐻 ) |
| 9 |
8
|
subggrp |
⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ↾s 𝐻 ) ∈ Grp ) |
| 10 |
3 9
|
syl |
⊢ ( 𝜑 → ( 𝐺 ↾s 𝐻 ) ∈ Grp ) |
| 11 |
|
pwfi |
⊢ ( 𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin ) |
| 12 |
2 11
|
sylib |
⊢ ( 𝜑 → 𝒫 𝑋 ∈ Fin ) |
| 13 |
1 6
|
eqger |
⊢ ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → ∼ Er 𝑋 ) |
| 14 |
4 13
|
syl |
⊢ ( 𝜑 → ∼ Er 𝑋 ) |
| 15 |
14
|
qsss |
⊢ ( 𝜑 → ( 𝑋 / ∼ ) ⊆ 𝒫 𝑋 ) |
| 16 |
12 15
|
ssexd |
⊢ ( 𝜑 → ( 𝑋 / ∼ ) ∈ V ) |
| 17 |
10 16
|
jca |
⊢ ( 𝜑 → ( ( 𝐺 ↾s 𝐻 ) ∈ Grp ∧ ( 𝑋 / ∼ ) ∈ V ) ) |
| 18 |
|
vex |
⊢ 𝑦 ∈ V |
| 19 |
18
|
mptex |
⊢ ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ∈ V |
| 20 |
19
|
rnex |
⊢ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ∈ V |
| 21 |
7 20
|
fnmpoi |
⊢ · Fn ( 𝐻 × ( 𝑋 / ∼ ) ) |
| 22 |
21
|
a1i |
⊢ ( 𝜑 → · Fn ( 𝐻 × ( 𝑋 / ∼ ) ) ) |
| 23 |
|
eqid |
⊢ ( 𝑋 / ∼ ) = ( 𝑋 / ∼ ) |
| 24 |
|
oveq2 |
⊢ ( [ 𝑠 ] ∼ = 𝑣 → ( 𝑢 · [ 𝑠 ] ∼ ) = ( 𝑢 · 𝑣 ) ) |
| 25 |
24
|
eleq1d |
⊢ ( [ 𝑠 ] ∼ = 𝑣 → ( ( 𝑢 · [ 𝑠 ] ∼ ) ∈ ( 𝑋 / ∼ ) ↔ ( 𝑢 · 𝑣 ) ∈ ( 𝑋 / ∼ ) ) ) |
| 26 |
1 2 3 4 5 6 7
|
sylow2blem1 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐻 ∧ 𝑠 ∈ 𝑋 ) → ( 𝑢 · [ 𝑠 ] ∼ ) = [ ( 𝑢 + 𝑠 ) ] ∼ ) |
| 27 |
6
|
ovexi |
⊢ ∼ ∈ V |
| 28 |
|
subgrcl |
⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
| 29 |
3 28
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 30 |
29
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐻 ∧ 𝑠 ∈ 𝑋 ) → 𝐺 ∈ Grp ) |
| 31 |
1
|
subgss |
⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 ⊆ 𝑋 ) |
| 32 |
3 31
|
syl |
⊢ ( 𝜑 → 𝐻 ⊆ 𝑋 ) |
| 33 |
32
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐻 ) → 𝑢 ∈ 𝑋 ) |
| 34 |
33
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐻 ∧ 𝑠 ∈ 𝑋 ) → 𝑢 ∈ 𝑋 ) |
| 35 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐻 ∧ 𝑠 ∈ 𝑋 ) → 𝑠 ∈ 𝑋 ) |
| 36 |
1 5
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑢 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋 ) → ( 𝑢 + 𝑠 ) ∈ 𝑋 ) |
| 37 |
30 34 35 36
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐻 ∧ 𝑠 ∈ 𝑋 ) → ( 𝑢 + 𝑠 ) ∈ 𝑋 ) |
| 38 |
|
ecelqsg |
⊢ ( ( ∼ ∈ V ∧ ( 𝑢 + 𝑠 ) ∈ 𝑋 ) → [ ( 𝑢 + 𝑠 ) ] ∼ ∈ ( 𝑋 / ∼ ) ) |
| 39 |
27 37 38
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐻 ∧ 𝑠 ∈ 𝑋 ) → [ ( 𝑢 + 𝑠 ) ] ∼ ∈ ( 𝑋 / ∼ ) ) |
| 40 |
26 39
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐻 ∧ 𝑠 ∈ 𝑋 ) → ( 𝑢 · [ 𝑠 ] ∼ ) ∈ ( 𝑋 / ∼ ) ) |
| 41 |
40
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝑋 ) → ( 𝑢 · [ 𝑠 ] ∼ ) ∈ ( 𝑋 / ∼ ) ) |
| 42 |
23 25 41
|
ectocld |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐻 ) ∧ 𝑣 ∈ ( 𝑋 / ∼ ) ) → ( 𝑢 · 𝑣 ) ∈ ( 𝑋 / ∼ ) ) |
| 43 |
42
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐻 ) → ∀ 𝑣 ∈ ( 𝑋 / ∼ ) ( 𝑢 · 𝑣 ) ∈ ( 𝑋 / ∼ ) ) |
| 44 |
43
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝐻 ∀ 𝑣 ∈ ( 𝑋 / ∼ ) ( 𝑢 · 𝑣 ) ∈ ( 𝑋 / ∼ ) ) |
| 45 |
|
ffnov |
⊢ ( · : ( 𝐻 × ( 𝑋 / ∼ ) ) ⟶ ( 𝑋 / ∼ ) ↔ ( · Fn ( 𝐻 × ( 𝑋 / ∼ ) ) ∧ ∀ 𝑢 ∈ 𝐻 ∀ 𝑣 ∈ ( 𝑋 / ∼ ) ( 𝑢 · 𝑣 ) ∈ ( 𝑋 / ∼ ) ) ) |
| 46 |
22 44 45
|
sylanbrc |
⊢ ( 𝜑 → · : ( 𝐻 × ( 𝑋 / ∼ ) ) ⟶ ( 𝑋 / ∼ ) ) |
| 47 |
8
|
subgbas |
⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 = ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ) |
| 48 |
3 47
|
syl |
⊢ ( 𝜑 → 𝐻 = ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ) |
| 49 |
48
|
xpeq1d |
⊢ ( 𝜑 → ( 𝐻 × ( 𝑋 / ∼ ) ) = ( ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) × ( 𝑋 / ∼ ) ) ) |
| 50 |
49
|
feq2d |
⊢ ( 𝜑 → ( · : ( 𝐻 × ( 𝑋 / ∼ ) ) ⟶ ( 𝑋 / ∼ ) ↔ · : ( ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) × ( 𝑋 / ∼ ) ) ⟶ ( 𝑋 / ∼ ) ) ) |
| 51 |
46 50
|
mpbid |
⊢ ( 𝜑 → · : ( ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) × ( 𝑋 / ∼ ) ) ⟶ ( 𝑋 / ∼ ) ) |
| 52 |
|
oveq2 |
⊢ ( [ 𝑠 ] ∼ = 𝑢 → ( ( 0g ‘ ( 𝐺 ↾s 𝐻 ) ) · [ 𝑠 ] ∼ ) = ( ( 0g ‘ ( 𝐺 ↾s 𝐻 ) ) · 𝑢 ) ) |
| 53 |
|
id |
⊢ ( [ 𝑠 ] ∼ = 𝑢 → [ 𝑠 ] ∼ = 𝑢 ) |
| 54 |
52 53
|
eqeq12d |
⊢ ( [ 𝑠 ] ∼ = 𝑢 → ( ( ( 0g ‘ ( 𝐺 ↾s 𝐻 ) ) · [ 𝑠 ] ∼ ) = [ 𝑠 ] ∼ ↔ ( ( 0g ‘ ( 𝐺 ↾s 𝐻 ) ) · 𝑢 ) = 𝑢 ) ) |
| 55 |
|
oveq2 |
⊢ ( [ 𝑠 ] ∼ = 𝑢 → ( ( 𝑎 ( +g ‘ ( 𝐺 ↾s 𝐻 ) ) 𝑏 ) · [ 𝑠 ] ∼ ) = ( ( 𝑎 ( +g ‘ ( 𝐺 ↾s 𝐻 ) ) 𝑏 ) · 𝑢 ) ) |
| 56 |
|
oveq2 |
⊢ ( [ 𝑠 ] ∼ = 𝑢 → ( 𝑏 · [ 𝑠 ] ∼ ) = ( 𝑏 · 𝑢 ) ) |
| 57 |
56
|
oveq2d |
⊢ ( [ 𝑠 ] ∼ = 𝑢 → ( 𝑎 · ( 𝑏 · [ 𝑠 ] ∼ ) ) = ( 𝑎 · ( 𝑏 · 𝑢 ) ) ) |
| 58 |
55 57
|
eqeq12d |
⊢ ( [ 𝑠 ] ∼ = 𝑢 → ( ( ( 𝑎 ( +g ‘ ( 𝐺 ↾s 𝐻 ) ) 𝑏 ) · [ 𝑠 ] ∼ ) = ( 𝑎 · ( 𝑏 · [ 𝑠 ] ∼ ) ) ↔ ( ( 𝑎 ( +g ‘ ( 𝐺 ↾s 𝐻 ) ) 𝑏 ) · 𝑢 ) = ( 𝑎 · ( 𝑏 · 𝑢 ) ) ) ) |
| 59 |
58
|
2ralbidv |
⊢ ( [ 𝑠 ] ∼ = 𝑢 → ( ∀ 𝑎 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ∀ 𝑏 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺 ↾s 𝐻 ) ) 𝑏 ) · [ 𝑠 ] ∼ ) = ( 𝑎 · ( 𝑏 · [ 𝑠 ] ∼ ) ) ↔ ∀ 𝑎 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ∀ 𝑏 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺 ↾s 𝐻 ) ) 𝑏 ) · 𝑢 ) = ( 𝑎 · ( 𝑏 · 𝑢 ) ) ) ) |
| 60 |
54 59
|
anbi12d |
⊢ ( [ 𝑠 ] ∼ = 𝑢 → ( ( ( ( 0g ‘ ( 𝐺 ↾s 𝐻 ) ) · [ 𝑠 ] ∼ ) = [ 𝑠 ] ∼ ∧ ∀ 𝑎 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ∀ 𝑏 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺 ↾s 𝐻 ) ) 𝑏 ) · [ 𝑠 ] ∼ ) = ( 𝑎 · ( 𝑏 · [ 𝑠 ] ∼ ) ) ) ↔ ( ( ( 0g ‘ ( 𝐺 ↾s 𝐻 ) ) · 𝑢 ) = 𝑢 ∧ ∀ 𝑎 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ∀ 𝑏 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺 ↾s 𝐻 ) ) 𝑏 ) · 𝑢 ) = ( 𝑎 · ( 𝑏 · 𝑢 ) ) ) ) ) |
| 61 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → 𝜑 ) |
| 62 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 63 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 64 |
63
|
subg0cl |
⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝐻 ) |
| 65 |
62 64
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → ( 0g ‘ 𝐺 ) ∈ 𝐻 ) |
| 66 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → 𝑠 ∈ 𝑋 ) |
| 67 |
1 2 3 4 5 6 7
|
sylow2blem1 |
⊢ ( ( 𝜑 ∧ ( 0g ‘ 𝐺 ) ∈ 𝐻 ∧ 𝑠 ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) · [ 𝑠 ] ∼ ) = [ ( ( 0g ‘ 𝐺 ) + 𝑠 ) ] ∼ ) |
| 68 |
61 65 66 67
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) · [ 𝑠 ] ∼ ) = [ ( ( 0g ‘ 𝐺 ) + 𝑠 ) ] ∼ ) |
| 69 |
8 63
|
subg0 |
⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) = ( 0g ‘ ( 𝐺 ↾s 𝐻 ) ) ) |
| 70 |
62 69
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → ( 0g ‘ 𝐺 ) = ( 0g ‘ ( 𝐺 ↾s 𝐻 ) ) ) |
| 71 |
70
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) · [ 𝑠 ] ∼ ) = ( ( 0g ‘ ( 𝐺 ↾s 𝐻 ) ) · [ 𝑠 ] ∼ ) ) |
| 72 |
1 5 63
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑠 ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) + 𝑠 ) = 𝑠 ) |
| 73 |
29 72
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) + 𝑠 ) = 𝑠 ) |
| 74 |
73
|
eceq1d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → [ ( ( 0g ‘ 𝐺 ) + 𝑠 ) ] ∼ = [ 𝑠 ] ∼ ) |
| 75 |
68 71 74
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → ( ( 0g ‘ ( 𝐺 ↾s 𝐻 ) ) · [ 𝑠 ] ∼ ) = [ 𝑠 ] ∼ ) |
| 76 |
62
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻 ) ) → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 77 |
76 28
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻 ) ) → 𝐺 ∈ Grp ) |
| 78 |
76 31
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻 ) ) → 𝐻 ⊆ 𝑋 ) |
| 79 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻 ) ) → 𝑎 ∈ 𝐻 ) |
| 80 |
78 79
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻 ) ) → 𝑎 ∈ 𝑋 ) |
| 81 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻 ) ) → 𝑏 ∈ 𝐻 ) |
| 82 |
78 81
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻 ) ) → 𝑏 ∈ 𝑋 ) |
| 83 |
66
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻 ) ) → 𝑠 ∈ 𝑋 ) |
| 84 |
1 5
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋 ) ) → ( ( 𝑎 + 𝑏 ) + 𝑠 ) = ( 𝑎 + ( 𝑏 + 𝑠 ) ) ) |
| 85 |
77 80 82 83 84
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻 ) ) → ( ( 𝑎 + 𝑏 ) + 𝑠 ) = ( 𝑎 + ( 𝑏 + 𝑠 ) ) ) |
| 86 |
85
|
eceq1d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻 ) ) → [ ( ( 𝑎 + 𝑏 ) + 𝑠 ) ] ∼ = [ ( 𝑎 + ( 𝑏 + 𝑠 ) ) ] ∼ ) |
| 87 |
61
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻 ) ) → 𝜑 ) |
| 88 |
1 5
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑏 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋 ) → ( 𝑏 + 𝑠 ) ∈ 𝑋 ) |
| 89 |
77 82 83 88
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻 ) ) → ( 𝑏 + 𝑠 ) ∈ 𝑋 ) |
| 90 |
1 2 3 4 5 6 7
|
sylow2blem1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ∧ ( 𝑏 + 𝑠 ) ∈ 𝑋 ) → ( 𝑎 · [ ( 𝑏 + 𝑠 ) ] ∼ ) = [ ( 𝑎 + ( 𝑏 + 𝑠 ) ) ] ∼ ) |
| 91 |
87 79 89 90
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻 ) ) → ( 𝑎 · [ ( 𝑏 + 𝑠 ) ] ∼ ) = [ ( 𝑎 + ( 𝑏 + 𝑠 ) ) ] ∼ ) |
| 92 |
86 91
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻 ) ) → [ ( ( 𝑎 + 𝑏 ) + 𝑠 ) ] ∼ = ( 𝑎 · [ ( 𝑏 + 𝑠 ) ] ∼ ) ) |
| 93 |
5
|
subgcl |
⊢ ( ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻 ) → ( 𝑎 + 𝑏 ) ∈ 𝐻 ) |
| 94 |
76 79 81 93
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻 ) ) → ( 𝑎 + 𝑏 ) ∈ 𝐻 ) |
| 95 |
1 2 3 4 5 6 7
|
sylow2blem1 |
⊢ ( ( 𝜑 ∧ ( 𝑎 + 𝑏 ) ∈ 𝐻 ∧ 𝑠 ∈ 𝑋 ) → ( ( 𝑎 + 𝑏 ) · [ 𝑠 ] ∼ ) = [ ( ( 𝑎 + 𝑏 ) + 𝑠 ) ] ∼ ) |
| 96 |
87 94 83 95
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻 ) ) → ( ( 𝑎 + 𝑏 ) · [ 𝑠 ] ∼ ) = [ ( ( 𝑎 + 𝑏 ) + 𝑠 ) ] ∼ ) |
| 97 |
1 2 3 4 5 6 7
|
sylow2blem1 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐻 ∧ 𝑠 ∈ 𝑋 ) → ( 𝑏 · [ 𝑠 ] ∼ ) = [ ( 𝑏 + 𝑠 ) ] ∼ ) |
| 98 |
87 81 83 97
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻 ) ) → ( 𝑏 · [ 𝑠 ] ∼ ) = [ ( 𝑏 + 𝑠 ) ] ∼ ) |
| 99 |
98
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻 ) ) → ( 𝑎 · ( 𝑏 · [ 𝑠 ] ∼ ) ) = ( 𝑎 · [ ( 𝑏 + 𝑠 ) ] ∼ ) ) |
| 100 |
92 96 99
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻 ) ) → ( ( 𝑎 + 𝑏 ) · [ 𝑠 ] ∼ ) = ( 𝑎 · ( 𝑏 · [ 𝑠 ] ∼ ) ) ) |
| 101 |
100
|
ralrimivva |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → ∀ 𝑎 ∈ 𝐻 ∀ 𝑏 ∈ 𝐻 ( ( 𝑎 + 𝑏 ) · [ 𝑠 ] ∼ ) = ( 𝑎 · ( 𝑏 · [ 𝑠 ] ∼ ) ) ) |
| 102 |
62 47
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → 𝐻 = ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ) |
| 103 |
8 5
|
ressplusg |
⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → + = ( +g ‘ ( 𝐺 ↾s 𝐻 ) ) ) |
| 104 |
3 103
|
syl |
⊢ ( 𝜑 → + = ( +g ‘ ( 𝐺 ↾s 𝐻 ) ) ) |
| 105 |
104
|
oveqdr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → ( 𝑎 + 𝑏 ) = ( 𝑎 ( +g ‘ ( 𝐺 ↾s 𝐻 ) ) 𝑏 ) ) |
| 106 |
105
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → ( ( 𝑎 + 𝑏 ) · [ 𝑠 ] ∼ ) = ( ( 𝑎 ( +g ‘ ( 𝐺 ↾s 𝐻 ) ) 𝑏 ) · [ 𝑠 ] ∼ ) ) |
| 107 |
106
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → ( ( ( 𝑎 + 𝑏 ) · [ 𝑠 ] ∼ ) = ( 𝑎 · ( 𝑏 · [ 𝑠 ] ∼ ) ) ↔ ( ( 𝑎 ( +g ‘ ( 𝐺 ↾s 𝐻 ) ) 𝑏 ) · [ 𝑠 ] ∼ ) = ( 𝑎 · ( 𝑏 · [ 𝑠 ] ∼ ) ) ) ) |
| 108 |
102 107
|
raleqbidv |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → ( ∀ 𝑏 ∈ 𝐻 ( ( 𝑎 + 𝑏 ) · [ 𝑠 ] ∼ ) = ( 𝑎 · ( 𝑏 · [ 𝑠 ] ∼ ) ) ↔ ∀ 𝑏 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺 ↾s 𝐻 ) ) 𝑏 ) · [ 𝑠 ] ∼ ) = ( 𝑎 · ( 𝑏 · [ 𝑠 ] ∼ ) ) ) ) |
| 109 |
102 108
|
raleqbidv |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → ( ∀ 𝑎 ∈ 𝐻 ∀ 𝑏 ∈ 𝐻 ( ( 𝑎 + 𝑏 ) · [ 𝑠 ] ∼ ) = ( 𝑎 · ( 𝑏 · [ 𝑠 ] ∼ ) ) ↔ ∀ 𝑎 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ∀ 𝑏 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺 ↾s 𝐻 ) ) 𝑏 ) · [ 𝑠 ] ∼ ) = ( 𝑎 · ( 𝑏 · [ 𝑠 ] ∼ ) ) ) ) |
| 110 |
101 109
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → ∀ 𝑎 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ∀ 𝑏 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺 ↾s 𝐻 ) ) 𝑏 ) · [ 𝑠 ] ∼ ) = ( 𝑎 · ( 𝑏 · [ 𝑠 ] ∼ ) ) ) |
| 111 |
75 110
|
jca |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑋 ) → ( ( ( 0g ‘ ( 𝐺 ↾s 𝐻 ) ) · [ 𝑠 ] ∼ ) = [ 𝑠 ] ∼ ∧ ∀ 𝑎 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ∀ 𝑏 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺 ↾s 𝐻 ) ) 𝑏 ) · [ 𝑠 ] ∼ ) = ( 𝑎 · ( 𝑏 · [ 𝑠 ] ∼ ) ) ) ) |
| 112 |
23 60 111
|
ectocld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝑋 / ∼ ) ) → ( ( ( 0g ‘ ( 𝐺 ↾s 𝐻 ) ) · 𝑢 ) = 𝑢 ∧ ∀ 𝑎 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ∀ 𝑏 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺 ↾s 𝐻 ) ) 𝑏 ) · 𝑢 ) = ( 𝑎 · ( 𝑏 · 𝑢 ) ) ) ) |
| 113 |
112
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑢 ∈ ( 𝑋 / ∼ ) ( ( ( 0g ‘ ( 𝐺 ↾s 𝐻 ) ) · 𝑢 ) = 𝑢 ∧ ∀ 𝑎 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ∀ 𝑏 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺 ↾s 𝐻 ) ) 𝑏 ) · 𝑢 ) = ( 𝑎 · ( 𝑏 · 𝑢 ) ) ) ) |
| 114 |
51 113
|
jca |
⊢ ( 𝜑 → ( · : ( ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) × ( 𝑋 / ∼ ) ) ⟶ ( 𝑋 / ∼ ) ∧ ∀ 𝑢 ∈ ( 𝑋 / ∼ ) ( ( ( 0g ‘ ( 𝐺 ↾s 𝐻 ) ) · 𝑢 ) = 𝑢 ∧ ∀ 𝑎 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ∀ 𝑏 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺 ↾s 𝐻 ) ) 𝑏 ) · 𝑢 ) = ( 𝑎 · ( 𝑏 · 𝑢 ) ) ) ) ) |
| 115 |
|
eqid |
⊢ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) = ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) |
| 116 |
|
eqid |
⊢ ( +g ‘ ( 𝐺 ↾s 𝐻 ) ) = ( +g ‘ ( 𝐺 ↾s 𝐻 ) ) |
| 117 |
|
eqid |
⊢ ( 0g ‘ ( 𝐺 ↾s 𝐻 ) ) = ( 0g ‘ ( 𝐺 ↾s 𝐻 ) ) |
| 118 |
115 116 117
|
isga |
⊢ ( · ∈ ( ( 𝐺 ↾s 𝐻 ) GrpAct ( 𝑋 / ∼ ) ) ↔ ( ( ( 𝐺 ↾s 𝐻 ) ∈ Grp ∧ ( 𝑋 / ∼ ) ∈ V ) ∧ ( · : ( ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) × ( 𝑋 / ∼ ) ) ⟶ ( 𝑋 / ∼ ) ∧ ∀ 𝑢 ∈ ( 𝑋 / ∼ ) ( ( ( 0g ‘ ( 𝐺 ↾s 𝐻 ) ) · 𝑢 ) = 𝑢 ∧ ∀ 𝑎 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ∀ 𝑏 ∈ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺 ↾s 𝐻 ) ) 𝑏 ) · 𝑢 ) = ( 𝑎 · ( 𝑏 · 𝑢 ) ) ) ) ) ) |
| 119 |
17 114 118
|
sylanbrc |
⊢ ( 𝜑 → · ∈ ( ( 𝐺 ↾s 𝐻 ) GrpAct ( 𝑋 / ∼ ) ) ) |