| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sylow2b.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | sylow2b.xf | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 3 |  | sylow2b.h | ⊢ ( 𝜑  →  𝐻  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 4 |  | sylow2b.k | ⊢ ( 𝜑  →  𝐾  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 5 |  | sylow2b.a | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 6 |  | sylow2b.r | ⊢  ∼   =  ( 𝐺  ~QG  𝐾 ) | 
						
							| 7 |  | sylow2b.m | ⊢  ·   =  ( 𝑥  ∈  𝐻 ,  𝑦  ∈  ( 𝑋  /   ∼  )  ↦  ran  ( 𝑧  ∈  𝑦  ↦  ( 𝑥  +  𝑧 ) ) ) | 
						
							| 8 |  | eqid | ⊢ ( 𝐺  ↾s  𝐻 )  =  ( 𝐺  ↾s  𝐻 ) | 
						
							| 9 | 8 | subggrp | ⊢ ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝐺  ↾s  𝐻 )  ∈  Grp ) | 
						
							| 10 | 3 9 | syl | ⊢ ( 𝜑  →  ( 𝐺  ↾s  𝐻 )  ∈  Grp ) | 
						
							| 11 |  | pwfi | ⊢ ( 𝑋  ∈  Fin  ↔  𝒫  𝑋  ∈  Fin ) | 
						
							| 12 | 2 11 | sylib | ⊢ ( 𝜑  →  𝒫  𝑋  ∈  Fin ) | 
						
							| 13 | 1 6 | eqger | ⊢ ( 𝐾  ∈  ( SubGrp ‘ 𝐺 )  →   ∼   Er  𝑋 ) | 
						
							| 14 | 4 13 | syl | ⊢ ( 𝜑  →   ∼   Er  𝑋 ) | 
						
							| 15 | 14 | qsss | ⊢ ( 𝜑  →  ( 𝑋  /   ∼  )  ⊆  𝒫  𝑋 ) | 
						
							| 16 | 12 15 | ssexd | ⊢ ( 𝜑  →  ( 𝑋  /   ∼  )  ∈  V ) | 
						
							| 17 | 10 16 | jca | ⊢ ( 𝜑  →  ( ( 𝐺  ↾s  𝐻 )  ∈  Grp  ∧  ( 𝑋  /   ∼  )  ∈  V ) ) | 
						
							| 18 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 19 | 18 | mptex | ⊢ ( 𝑧  ∈  𝑦  ↦  ( 𝑥  +  𝑧 ) )  ∈  V | 
						
							| 20 | 19 | rnex | ⊢ ran  ( 𝑧  ∈  𝑦  ↦  ( 𝑥  +  𝑧 ) )  ∈  V | 
						
							| 21 | 7 20 | fnmpoi | ⊢  ·   Fn  ( 𝐻  ×  ( 𝑋  /   ∼  ) ) | 
						
							| 22 | 21 | a1i | ⊢ ( 𝜑  →   ·   Fn  ( 𝐻  ×  ( 𝑋  /   ∼  ) ) ) | 
						
							| 23 |  | eqid | ⊢ ( 𝑋  /   ∼  )  =  ( 𝑋  /   ∼  ) | 
						
							| 24 |  | oveq2 | ⊢ ( [ 𝑠 ]  ∼   =  𝑣  →  ( 𝑢  ·  [ 𝑠 ]  ∼  )  =  ( 𝑢  ·  𝑣 ) ) | 
						
							| 25 | 24 | eleq1d | ⊢ ( [ 𝑠 ]  ∼   =  𝑣  →  ( ( 𝑢  ·  [ 𝑠 ]  ∼  )  ∈  ( 𝑋  /   ∼  )  ↔  ( 𝑢  ·  𝑣 )  ∈  ( 𝑋  /   ∼  ) ) ) | 
						
							| 26 | 1 2 3 4 5 6 7 | sylow2blem1 | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐻  ∧  𝑠  ∈  𝑋 )  →  ( 𝑢  ·  [ 𝑠 ]  ∼  )  =  [ ( 𝑢  +  𝑠 ) ]  ∼  ) | 
						
							| 27 | 6 | ovexi | ⊢  ∼   ∈  V | 
						
							| 28 |  | subgrcl | ⊢ ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  →  𝐺  ∈  Grp ) | 
						
							| 29 | 3 28 | syl | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 30 | 29 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐻  ∧  𝑠  ∈  𝑋 )  →  𝐺  ∈  Grp ) | 
						
							| 31 | 1 | subgss | ⊢ ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  →  𝐻  ⊆  𝑋 ) | 
						
							| 32 | 3 31 | syl | ⊢ ( 𝜑  →  𝐻  ⊆  𝑋 ) | 
						
							| 33 | 32 | sselda | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐻 )  →  𝑢  ∈  𝑋 ) | 
						
							| 34 | 33 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐻  ∧  𝑠  ∈  𝑋 )  →  𝑢  ∈  𝑋 ) | 
						
							| 35 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐻  ∧  𝑠  ∈  𝑋 )  →  𝑠  ∈  𝑋 ) | 
						
							| 36 | 1 5 | grpcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑢  ∈  𝑋  ∧  𝑠  ∈  𝑋 )  →  ( 𝑢  +  𝑠 )  ∈  𝑋 ) | 
						
							| 37 | 30 34 35 36 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐻  ∧  𝑠  ∈  𝑋 )  →  ( 𝑢  +  𝑠 )  ∈  𝑋 ) | 
						
							| 38 |  | ecelqsg | ⊢ ( (  ∼   ∈  V  ∧  ( 𝑢  +  𝑠 )  ∈  𝑋 )  →  [ ( 𝑢  +  𝑠 ) ]  ∼   ∈  ( 𝑋  /   ∼  ) ) | 
						
							| 39 | 27 37 38 | sylancr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐻  ∧  𝑠  ∈  𝑋 )  →  [ ( 𝑢  +  𝑠 ) ]  ∼   ∈  ( 𝑋  /   ∼  ) ) | 
						
							| 40 | 26 39 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐻  ∧  𝑠  ∈  𝑋 )  →  ( 𝑢  ·  [ 𝑠 ]  ∼  )  ∈  ( 𝑋  /   ∼  ) ) | 
						
							| 41 | 40 | 3expa | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝐻 )  ∧  𝑠  ∈  𝑋 )  →  ( 𝑢  ·  [ 𝑠 ]  ∼  )  ∈  ( 𝑋  /   ∼  ) ) | 
						
							| 42 | 23 25 41 | ectocld | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝐻 )  ∧  𝑣  ∈  ( 𝑋  /   ∼  ) )  →  ( 𝑢  ·  𝑣 )  ∈  ( 𝑋  /   ∼  ) ) | 
						
							| 43 | 42 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐻 )  →  ∀ 𝑣  ∈  ( 𝑋  /   ∼  ) ( 𝑢  ·  𝑣 )  ∈  ( 𝑋  /   ∼  ) ) | 
						
							| 44 | 43 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑢  ∈  𝐻 ∀ 𝑣  ∈  ( 𝑋  /   ∼  ) ( 𝑢  ·  𝑣 )  ∈  ( 𝑋  /   ∼  ) ) | 
						
							| 45 |  | ffnov | ⊢ (  ·  : ( 𝐻  ×  ( 𝑋  /   ∼  ) ) ⟶ ( 𝑋  /   ∼  )  ↔  (  ·   Fn  ( 𝐻  ×  ( 𝑋  /   ∼  ) )  ∧  ∀ 𝑢  ∈  𝐻 ∀ 𝑣  ∈  ( 𝑋  /   ∼  ) ( 𝑢  ·  𝑣 )  ∈  ( 𝑋  /   ∼  ) ) ) | 
						
							| 46 | 22 44 45 | sylanbrc | ⊢ ( 𝜑  →   ·  : ( 𝐻  ×  ( 𝑋  /   ∼  ) ) ⟶ ( 𝑋  /   ∼  ) ) | 
						
							| 47 | 8 | subgbas | ⊢ ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  →  𝐻  =  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ) | 
						
							| 48 | 3 47 | syl | ⊢ ( 𝜑  →  𝐻  =  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ) | 
						
							| 49 | 48 | xpeq1d | ⊢ ( 𝜑  →  ( 𝐻  ×  ( 𝑋  /   ∼  ) )  =  ( ( Base ‘ ( 𝐺  ↾s  𝐻 ) )  ×  ( 𝑋  /   ∼  ) ) ) | 
						
							| 50 | 49 | feq2d | ⊢ ( 𝜑  →  (  ·  : ( 𝐻  ×  ( 𝑋  /   ∼  ) ) ⟶ ( 𝑋  /   ∼  )  ↔   ·  : ( ( Base ‘ ( 𝐺  ↾s  𝐻 ) )  ×  ( 𝑋  /   ∼  ) ) ⟶ ( 𝑋  /   ∼  ) ) ) | 
						
							| 51 | 46 50 | mpbid | ⊢ ( 𝜑  →   ·  : ( ( Base ‘ ( 𝐺  ↾s  𝐻 ) )  ×  ( 𝑋  /   ∼  ) ) ⟶ ( 𝑋  /   ∼  ) ) | 
						
							| 52 |  | oveq2 | ⊢ ( [ 𝑠 ]  ∼   =  𝑢  →  ( ( 0g ‘ ( 𝐺  ↾s  𝐻 ) )  ·  [ 𝑠 ]  ∼  )  =  ( ( 0g ‘ ( 𝐺  ↾s  𝐻 ) )  ·  𝑢 ) ) | 
						
							| 53 |  | id | ⊢ ( [ 𝑠 ]  ∼   =  𝑢  →  [ 𝑠 ]  ∼   =  𝑢 ) | 
						
							| 54 | 52 53 | eqeq12d | ⊢ ( [ 𝑠 ]  ∼   =  𝑢  →  ( ( ( 0g ‘ ( 𝐺  ↾s  𝐻 ) )  ·  [ 𝑠 ]  ∼  )  =  [ 𝑠 ]  ∼   ↔  ( ( 0g ‘ ( 𝐺  ↾s  𝐻 ) )  ·  𝑢 )  =  𝑢 ) ) | 
						
							| 55 |  | oveq2 | ⊢ ( [ 𝑠 ]  ∼   =  𝑢  →  ( ( 𝑎 ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) 𝑏 )  ·  [ 𝑠 ]  ∼  )  =  ( ( 𝑎 ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) 𝑏 )  ·  𝑢 ) ) | 
						
							| 56 |  | oveq2 | ⊢ ( [ 𝑠 ]  ∼   =  𝑢  →  ( 𝑏  ·  [ 𝑠 ]  ∼  )  =  ( 𝑏  ·  𝑢 ) ) | 
						
							| 57 | 56 | oveq2d | ⊢ ( [ 𝑠 ]  ∼   =  𝑢  →  ( 𝑎  ·  ( 𝑏  ·  [ 𝑠 ]  ∼  ) )  =  ( 𝑎  ·  ( 𝑏  ·  𝑢 ) ) ) | 
						
							| 58 | 55 57 | eqeq12d | ⊢ ( [ 𝑠 ]  ∼   =  𝑢  →  ( ( ( 𝑎 ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) 𝑏 )  ·  [ 𝑠 ]  ∼  )  =  ( 𝑎  ·  ( 𝑏  ·  [ 𝑠 ]  ∼  ) )  ↔  ( ( 𝑎 ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) 𝑏 )  ·  𝑢 )  =  ( 𝑎  ·  ( 𝑏  ·  𝑢 ) ) ) ) | 
						
							| 59 | 58 | 2ralbidv | ⊢ ( [ 𝑠 ]  ∼   =  𝑢  →  ( ∀ 𝑎  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ∀ 𝑏  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) 𝑏 )  ·  [ 𝑠 ]  ∼  )  =  ( 𝑎  ·  ( 𝑏  ·  [ 𝑠 ]  ∼  ) )  ↔  ∀ 𝑎  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ∀ 𝑏  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) 𝑏 )  ·  𝑢 )  =  ( 𝑎  ·  ( 𝑏  ·  𝑢 ) ) ) ) | 
						
							| 60 | 54 59 | anbi12d | ⊢ ( [ 𝑠 ]  ∼   =  𝑢  →  ( ( ( ( 0g ‘ ( 𝐺  ↾s  𝐻 ) )  ·  [ 𝑠 ]  ∼  )  =  [ 𝑠 ]  ∼   ∧  ∀ 𝑎  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ∀ 𝑏  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) 𝑏 )  ·  [ 𝑠 ]  ∼  )  =  ( 𝑎  ·  ( 𝑏  ·  [ 𝑠 ]  ∼  ) ) )  ↔  ( ( ( 0g ‘ ( 𝐺  ↾s  𝐻 ) )  ·  𝑢 )  =  𝑢  ∧  ∀ 𝑎  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ∀ 𝑏  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) 𝑏 )  ·  𝑢 )  =  ( 𝑎  ·  ( 𝑏  ·  𝑢 ) ) ) ) ) | 
						
							| 61 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  𝜑 ) | 
						
							| 62 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  𝐻  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 63 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 64 | 63 | subg0cl | ⊢ ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  →  ( 0g ‘ 𝐺 )  ∈  𝐻 ) | 
						
							| 65 | 62 64 | syl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ( 0g ‘ 𝐺 )  ∈  𝐻 ) | 
						
							| 66 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  𝑠  ∈  𝑋 ) | 
						
							| 67 | 1 2 3 4 5 6 7 | sylow2blem1 | ⊢ ( ( 𝜑  ∧  ( 0g ‘ 𝐺 )  ∈  𝐻  ∧  𝑠  ∈  𝑋 )  →  ( ( 0g ‘ 𝐺 )  ·  [ 𝑠 ]  ∼  )  =  [ ( ( 0g ‘ 𝐺 )  +  𝑠 ) ]  ∼  ) | 
						
							| 68 | 61 65 66 67 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ( ( 0g ‘ 𝐺 )  ·  [ 𝑠 ]  ∼  )  =  [ ( ( 0g ‘ 𝐺 )  +  𝑠 ) ]  ∼  ) | 
						
							| 69 | 8 63 | subg0 | ⊢ ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  →  ( 0g ‘ 𝐺 )  =  ( 0g ‘ ( 𝐺  ↾s  𝐻 ) ) ) | 
						
							| 70 | 62 69 | syl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ( 0g ‘ 𝐺 )  =  ( 0g ‘ ( 𝐺  ↾s  𝐻 ) ) ) | 
						
							| 71 | 70 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ( ( 0g ‘ 𝐺 )  ·  [ 𝑠 ]  ∼  )  =  ( ( 0g ‘ ( 𝐺  ↾s  𝐻 ) )  ·  [ 𝑠 ]  ∼  ) ) | 
						
							| 72 | 1 5 63 | grplid | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑠  ∈  𝑋 )  →  ( ( 0g ‘ 𝐺 )  +  𝑠 )  =  𝑠 ) | 
						
							| 73 | 29 72 | sylan | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ( ( 0g ‘ 𝐺 )  +  𝑠 )  =  𝑠 ) | 
						
							| 74 | 73 | eceq1d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  [ ( ( 0g ‘ 𝐺 )  +  𝑠 ) ]  ∼   =  [ 𝑠 ]  ∼  ) | 
						
							| 75 | 68 71 74 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ( ( 0g ‘ ( 𝐺  ↾s  𝐻 ) )  ·  [ 𝑠 ]  ∼  )  =  [ 𝑠 ]  ∼  ) | 
						
							| 76 | 62 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  ∧  ( 𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 ) )  →  𝐻  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 77 | 76 28 | syl | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  ∧  ( 𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 ) )  →  𝐺  ∈  Grp ) | 
						
							| 78 | 76 31 | syl | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  ∧  ( 𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 ) )  →  𝐻  ⊆  𝑋 ) | 
						
							| 79 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  ∧  ( 𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 ) )  →  𝑎  ∈  𝐻 ) | 
						
							| 80 | 78 79 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  ∧  ( 𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 ) )  →  𝑎  ∈  𝑋 ) | 
						
							| 81 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  ∧  ( 𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 ) )  →  𝑏  ∈  𝐻 ) | 
						
							| 82 | 78 81 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  ∧  ( 𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 ) )  →  𝑏  ∈  𝑋 ) | 
						
							| 83 | 66 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  ∧  ( 𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 ) )  →  𝑠  ∈  𝑋 ) | 
						
							| 84 | 1 5 | grpass | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑎  ∈  𝑋  ∧  𝑏  ∈  𝑋  ∧  𝑠  ∈  𝑋 ) )  →  ( ( 𝑎  +  𝑏 )  +  𝑠 )  =  ( 𝑎  +  ( 𝑏  +  𝑠 ) ) ) | 
						
							| 85 | 77 80 82 83 84 | syl13anc | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  ∧  ( 𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 ) )  →  ( ( 𝑎  +  𝑏 )  +  𝑠 )  =  ( 𝑎  +  ( 𝑏  +  𝑠 ) ) ) | 
						
							| 86 | 85 | eceq1d | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  ∧  ( 𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 ) )  →  [ ( ( 𝑎  +  𝑏 )  +  𝑠 ) ]  ∼   =  [ ( 𝑎  +  ( 𝑏  +  𝑠 ) ) ]  ∼  ) | 
						
							| 87 | 61 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  ∧  ( 𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 ) )  →  𝜑 ) | 
						
							| 88 | 1 5 | grpcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑏  ∈  𝑋  ∧  𝑠  ∈  𝑋 )  →  ( 𝑏  +  𝑠 )  ∈  𝑋 ) | 
						
							| 89 | 77 82 83 88 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  ∧  ( 𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 ) )  →  ( 𝑏  +  𝑠 )  ∈  𝑋 ) | 
						
							| 90 | 1 2 3 4 5 6 7 | sylow2blem1 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐻  ∧  ( 𝑏  +  𝑠 )  ∈  𝑋 )  →  ( 𝑎  ·  [ ( 𝑏  +  𝑠 ) ]  ∼  )  =  [ ( 𝑎  +  ( 𝑏  +  𝑠 ) ) ]  ∼  ) | 
						
							| 91 | 87 79 89 90 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  ∧  ( 𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 ) )  →  ( 𝑎  ·  [ ( 𝑏  +  𝑠 ) ]  ∼  )  =  [ ( 𝑎  +  ( 𝑏  +  𝑠 ) ) ]  ∼  ) | 
						
							| 92 | 86 91 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  ∧  ( 𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 ) )  →  [ ( ( 𝑎  +  𝑏 )  +  𝑠 ) ]  ∼   =  ( 𝑎  ·  [ ( 𝑏  +  𝑠 ) ]  ∼  ) ) | 
						
							| 93 | 5 | subgcl | ⊢ ( ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 )  →  ( 𝑎  +  𝑏 )  ∈  𝐻 ) | 
						
							| 94 | 76 79 81 93 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  ∧  ( 𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 ) )  →  ( 𝑎  +  𝑏 )  ∈  𝐻 ) | 
						
							| 95 | 1 2 3 4 5 6 7 | sylow2blem1 | ⊢ ( ( 𝜑  ∧  ( 𝑎  +  𝑏 )  ∈  𝐻  ∧  𝑠  ∈  𝑋 )  →  ( ( 𝑎  +  𝑏 )  ·  [ 𝑠 ]  ∼  )  =  [ ( ( 𝑎  +  𝑏 )  +  𝑠 ) ]  ∼  ) | 
						
							| 96 | 87 94 83 95 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  ∧  ( 𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 ) )  →  ( ( 𝑎  +  𝑏 )  ·  [ 𝑠 ]  ∼  )  =  [ ( ( 𝑎  +  𝑏 )  +  𝑠 ) ]  ∼  ) | 
						
							| 97 | 1 2 3 4 5 6 7 | sylow2blem1 | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐻  ∧  𝑠  ∈  𝑋 )  →  ( 𝑏  ·  [ 𝑠 ]  ∼  )  =  [ ( 𝑏  +  𝑠 ) ]  ∼  ) | 
						
							| 98 | 87 81 83 97 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  ∧  ( 𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 ) )  →  ( 𝑏  ·  [ 𝑠 ]  ∼  )  =  [ ( 𝑏  +  𝑠 ) ]  ∼  ) | 
						
							| 99 | 98 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  ∧  ( 𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 ) )  →  ( 𝑎  ·  ( 𝑏  ·  [ 𝑠 ]  ∼  ) )  =  ( 𝑎  ·  [ ( 𝑏  +  𝑠 ) ]  ∼  ) ) | 
						
							| 100 | 92 96 99 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  ∧  ( 𝑎  ∈  𝐻  ∧  𝑏  ∈  𝐻 ) )  →  ( ( 𝑎  +  𝑏 )  ·  [ 𝑠 ]  ∼  )  =  ( 𝑎  ·  ( 𝑏  ·  [ 𝑠 ]  ∼  ) ) ) | 
						
							| 101 | 100 | ralrimivva | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ∀ 𝑎  ∈  𝐻 ∀ 𝑏  ∈  𝐻 ( ( 𝑎  +  𝑏 )  ·  [ 𝑠 ]  ∼  )  =  ( 𝑎  ·  ( 𝑏  ·  [ 𝑠 ]  ∼  ) ) ) | 
						
							| 102 | 62 47 | syl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  𝐻  =  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ) | 
						
							| 103 | 8 5 | ressplusg | ⊢ ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  →   +   =  ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) ) | 
						
							| 104 | 3 103 | syl | ⊢ ( 𝜑  →   +   =  ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) ) | 
						
							| 105 | 104 | oveqdr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ( 𝑎  +  𝑏 )  =  ( 𝑎 ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) 𝑏 ) ) | 
						
							| 106 | 105 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ( ( 𝑎  +  𝑏 )  ·  [ 𝑠 ]  ∼  )  =  ( ( 𝑎 ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) 𝑏 )  ·  [ 𝑠 ]  ∼  ) ) | 
						
							| 107 | 106 | eqeq1d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ( ( ( 𝑎  +  𝑏 )  ·  [ 𝑠 ]  ∼  )  =  ( 𝑎  ·  ( 𝑏  ·  [ 𝑠 ]  ∼  ) )  ↔  ( ( 𝑎 ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) 𝑏 )  ·  [ 𝑠 ]  ∼  )  =  ( 𝑎  ·  ( 𝑏  ·  [ 𝑠 ]  ∼  ) ) ) ) | 
						
							| 108 | 102 107 | raleqbidv | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ( ∀ 𝑏  ∈  𝐻 ( ( 𝑎  +  𝑏 )  ·  [ 𝑠 ]  ∼  )  =  ( 𝑎  ·  ( 𝑏  ·  [ 𝑠 ]  ∼  ) )  ↔  ∀ 𝑏  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) 𝑏 )  ·  [ 𝑠 ]  ∼  )  =  ( 𝑎  ·  ( 𝑏  ·  [ 𝑠 ]  ∼  ) ) ) ) | 
						
							| 109 | 102 108 | raleqbidv | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ( ∀ 𝑎  ∈  𝐻 ∀ 𝑏  ∈  𝐻 ( ( 𝑎  +  𝑏 )  ·  [ 𝑠 ]  ∼  )  =  ( 𝑎  ·  ( 𝑏  ·  [ 𝑠 ]  ∼  ) )  ↔  ∀ 𝑎  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ∀ 𝑏  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) 𝑏 )  ·  [ 𝑠 ]  ∼  )  =  ( 𝑎  ·  ( 𝑏  ·  [ 𝑠 ]  ∼  ) ) ) ) | 
						
							| 110 | 101 109 | mpbid | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ∀ 𝑎  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ∀ 𝑏  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) 𝑏 )  ·  [ 𝑠 ]  ∼  )  =  ( 𝑎  ·  ( 𝑏  ·  [ 𝑠 ]  ∼  ) ) ) | 
						
							| 111 | 75 110 | jca | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑋 )  →  ( ( ( 0g ‘ ( 𝐺  ↾s  𝐻 ) )  ·  [ 𝑠 ]  ∼  )  =  [ 𝑠 ]  ∼   ∧  ∀ 𝑎  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ∀ 𝑏  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) 𝑏 )  ·  [ 𝑠 ]  ∼  )  =  ( 𝑎  ·  ( 𝑏  ·  [ 𝑠 ]  ∼  ) ) ) ) | 
						
							| 112 | 23 60 111 | ectocld | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 𝑋  /   ∼  ) )  →  ( ( ( 0g ‘ ( 𝐺  ↾s  𝐻 ) )  ·  𝑢 )  =  𝑢  ∧  ∀ 𝑎  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ∀ 𝑏  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) 𝑏 )  ·  𝑢 )  =  ( 𝑎  ·  ( 𝑏  ·  𝑢 ) ) ) ) | 
						
							| 113 | 112 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑢  ∈  ( 𝑋  /   ∼  ) ( ( ( 0g ‘ ( 𝐺  ↾s  𝐻 ) )  ·  𝑢 )  =  𝑢  ∧  ∀ 𝑎  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ∀ 𝑏  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) 𝑏 )  ·  𝑢 )  =  ( 𝑎  ·  ( 𝑏  ·  𝑢 ) ) ) ) | 
						
							| 114 | 51 113 | jca | ⊢ ( 𝜑  →  (  ·  : ( ( Base ‘ ( 𝐺  ↾s  𝐻 ) )  ×  ( 𝑋  /   ∼  ) ) ⟶ ( 𝑋  /   ∼  )  ∧  ∀ 𝑢  ∈  ( 𝑋  /   ∼  ) ( ( ( 0g ‘ ( 𝐺  ↾s  𝐻 ) )  ·  𝑢 )  =  𝑢  ∧  ∀ 𝑎  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ∀ 𝑏  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) 𝑏 )  ·  𝑢 )  =  ( 𝑎  ·  ( 𝑏  ·  𝑢 ) ) ) ) ) | 
						
							| 115 |  | eqid | ⊢ ( Base ‘ ( 𝐺  ↾s  𝐻 ) )  =  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) | 
						
							| 116 |  | eqid | ⊢ ( +g ‘ ( 𝐺  ↾s  𝐻 ) )  =  ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) | 
						
							| 117 |  | eqid | ⊢ ( 0g ‘ ( 𝐺  ↾s  𝐻 ) )  =  ( 0g ‘ ( 𝐺  ↾s  𝐻 ) ) | 
						
							| 118 | 115 116 117 | isga | ⊢ (  ·   ∈  ( ( 𝐺  ↾s  𝐻 )  GrpAct  ( 𝑋  /   ∼  ) )  ↔  ( ( ( 𝐺  ↾s  𝐻 )  ∈  Grp  ∧  ( 𝑋  /   ∼  )  ∈  V )  ∧  (  ·  : ( ( Base ‘ ( 𝐺  ↾s  𝐻 ) )  ×  ( 𝑋  /   ∼  ) ) ⟶ ( 𝑋  /   ∼  )  ∧  ∀ 𝑢  ∈  ( 𝑋  /   ∼  ) ( ( ( 0g ‘ ( 𝐺  ↾s  𝐻 ) )  ·  𝑢 )  =  𝑢  ∧  ∀ 𝑎  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ∀ 𝑏  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( ( 𝑎 ( +g ‘ ( 𝐺  ↾s  𝐻 ) ) 𝑏 )  ·  𝑢 )  =  ( 𝑎  ·  ( 𝑏  ·  𝑢 ) ) ) ) ) ) | 
						
							| 119 | 17 114 118 | sylanbrc | ⊢ ( 𝜑  →   ·   ∈  ( ( 𝐺  ↾s  𝐻 )  GrpAct  ( 𝑋  /   ∼  ) ) ) |