| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sylow2b.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | sylow2b.xf | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 3 |  | sylow2b.h | ⊢ ( 𝜑  →  𝐻  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 4 |  | sylow2b.k | ⊢ ( 𝜑  →  𝐾  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 5 |  | sylow2b.a | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 6 |  | sylow2b.r | ⊢  ∼   =  ( 𝐺  ~QG  𝐾 ) | 
						
							| 7 |  | sylow2b.m | ⊢  ·   =  ( 𝑥  ∈  𝐻 ,  𝑦  ∈  ( 𝑋  /   ∼  )  ↦  ran  ( 𝑧  ∈  𝑦  ↦  ( 𝑥  +  𝑧 ) ) ) | 
						
							| 8 |  | sylow2blem3.hp | ⊢ ( 𝜑  →  𝑃  pGrp  ( 𝐺  ↾s  𝐻 ) ) | 
						
							| 9 |  | sylow2blem3.kn | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐾 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) | 
						
							| 10 |  | sylow2blem3.d | ⊢  −   =  ( -g ‘ 𝐺 ) | 
						
							| 11 |  | pgpprm | ⊢ ( 𝑃  pGrp  ( 𝐺  ↾s  𝐻 )  →  𝑃  ∈  ℙ ) | 
						
							| 12 | 8 11 | syl | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 13 |  | subgrcl | ⊢ ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  →  𝐺  ∈  Grp ) | 
						
							| 14 | 3 13 | syl | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 15 | 1 | grpbn0 | ⊢ ( 𝐺  ∈  Grp  →  𝑋  ≠  ∅ ) | 
						
							| 16 | 14 15 | syl | ⊢ ( 𝜑  →  𝑋  ≠  ∅ ) | 
						
							| 17 |  | hashnncl | ⊢ ( 𝑋  ∈  Fin  →  ( ( ♯ ‘ 𝑋 )  ∈  ℕ  ↔  𝑋  ≠  ∅ ) ) | 
						
							| 18 | 2 17 | syl | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑋 )  ∈  ℕ  ↔  𝑋  ≠  ∅ ) ) | 
						
							| 19 | 16 18 | mpbird | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑋 )  ∈  ℕ ) | 
						
							| 20 |  | pcndvds2 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( ♯ ‘ 𝑋 )  ∈  ℕ )  →  ¬  𝑃  ∥  ( ( ♯ ‘ 𝑋 )  /  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) ) | 
						
							| 21 | 12 19 20 | syl2anc | ⊢ ( 𝜑  →  ¬  𝑃  ∥  ( ( ♯ ‘ 𝑋 )  /  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) ) | 
						
							| 22 | 1 6 4 2 | lagsubg2 | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑋 )  =  ( ( ♯ ‘ ( 𝑋  /   ∼  ) )  ·  ( ♯ ‘ 𝐾 ) ) ) | 
						
							| 23 | 22 | oveq1d | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑋 )  /  ( ♯ ‘ 𝐾 ) )  =  ( ( ( ♯ ‘ ( 𝑋  /   ∼  ) )  ·  ( ♯ ‘ 𝐾 ) )  /  ( ♯ ‘ 𝐾 ) ) ) | 
						
							| 24 | 9 | oveq2d | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑋 )  /  ( ♯ ‘ 𝐾 ) )  =  ( ( ♯ ‘ 𝑋 )  /  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) ) | 
						
							| 25 |  | pwfi | ⊢ ( 𝑋  ∈  Fin  ↔  𝒫  𝑋  ∈  Fin ) | 
						
							| 26 | 2 25 | sylib | ⊢ ( 𝜑  →  𝒫  𝑋  ∈  Fin ) | 
						
							| 27 | 1 6 | eqger | ⊢ ( 𝐾  ∈  ( SubGrp ‘ 𝐺 )  →   ∼   Er  𝑋 ) | 
						
							| 28 | 4 27 | syl | ⊢ ( 𝜑  →   ∼   Er  𝑋 ) | 
						
							| 29 | 28 | qsss | ⊢ ( 𝜑  →  ( 𝑋  /   ∼  )  ⊆  𝒫  𝑋 ) | 
						
							| 30 | 26 29 | ssfid | ⊢ ( 𝜑  →  ( 𝑋  /   ∼  )  ∈  Fin ) | 
						
							| 31 |  | hashcl | ⊢ ( ( 𝑋  /   ∼  )  ∈  Fin  →  ( ♯ ‘ ( 𝑋  /   ∼  ) )  ∈  ℕ0 ) | 
						
							| 32 | 30 31 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑋  /   ∼  ) )  ∈  ℕ0 ) | 
						
							| 33 | 32 | nn0cnd | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑋  /   ∼  ) )  ∈  ℂ ) | 
						
							| 34 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 35 | 34 | subg0cl | ⊢ ( 𝐾  ∈  ( SubGrp ‘ 𝐺 )  →  ( 0g ‘ 𝐺 )  ∈  𝐾 ) | 
						
							| 36 | 4 35 | syl | ⊢ ( 𝜑  →  ( 0g ‘ 𝐺 )  ∈  𝐾 ) | 
						
							| 37 | 36 | ne0d | ⊢ ( 𝜑  →  𝐾  ≠  ∅ ) | 
						
							| 38 | 1 | subgss | ⊢ ( 𝐾  ∈  ( SubGrp ‘ 𝐺 )  →  𝐾  ⊆  𝑋 ) | 
						
							| 39 | 4 38 | syl | ⊢ ( 𝜑  →  𝐾  ⊆  𝑋 ) | 
						
							| 40 | 2 39 | ssfid | ⊢ ( 𝜑  →  𝐾  ∈  Fin ) | 
						
							| 41 |  | hashnncl | ⊢ ( 𝐾  ∈  Fin  →  ( ( ♯ ‘ 𝐾 )  ∈  ℕ  ↔  𝐾  ≠  ∅ ) ) | 
						
							| 42 | 40 41 | syl | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝐾 )  ∈  ℕ  ↔  𝐾  ≠  ∅ ) ) | 
						
							| 43 | 37 42 | mpbird | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐾 )  ∈  ℕ ) | 
						
							| 44 | 43 | nncnd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐾 )  ∈  ℂ ) | 
						
							| 45 | 43 | nnne0d | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐾 )  ≠  0 ) | 
						
							| 46 | 33 44 45 | divcan4d | ⊢ ( 𝜑  →  ( ( ( ♯ ‘ ( 𝑋  /   ∼  ) )  ·  ( ♯ ‘ 𝐾 ) )  /  ( ♯ ‘ 𝐾 ) )  =  ( ♯ ‘ ( 𝑋  /   ∼  ) ) ) | 
						
							| 47 | 23 24 46 | 3eqtr3d | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑋 )  /  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) )  =  ( ♯ ‘ ( 𝑋  /   ∼  ) ) ) | 
						
							| 48 | 47 | breq2d | ⊢ ( 𝜑  →  ( 𝑃  ∥  ( ( ♯ ‘ 𝑋 )  /  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) )  ↔  𝑃  ∥  ( ♯ ‘ ( 𝑋  /   ∼  ) ) ) ) | 
						
							| 49 | 21 48 | mtbid | ⊢ ( 𝜑  →  ¬  𝑃  ∥  ( ♯ ‘ ( 𝑋  /   ∼  ) ) ) | 
						
							| 50 |  | prmz | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℤ ) | 
						
							| 51 | 12 50 | syl | ⊢ ( 𝜑  →  𝑃  ∈  ℤ ) | 
						
							| 52 | 32 | nn0zd | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑋  /   ∼  ) )  ∈  ℤ ) | 
						
							| 53 |  | ssrab2 | ⊢ { 𝑧  ∈  ( 𝑋  /   ∼  )  ∣  ∀ 𝑢  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( 𝑢  ·  𝑧 )  =  𝑧 }  ⊆  ( 𝑋  /   ∼  ) | 
						
							| 54 |  | ssfi | ⊢ ( ( ( 𝑋  /   ∼  )  ∈  Fin  ∧  { 𝑧  ∈  ( 𝑋  /   ∼  )  ∣  ∀ 𝑢  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( 𝑢  ·  𝑧 )  =  𝑧 }  ⊆  ( 𝑋  /   ∼  ) )  →  { 𝑧  ∈  ( 𝑋  /   ∼  )  ∣  ∀ 𝑢  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( 𝑢  ·  𝑧 )  =  𝑧 }  ∈  Fin ) | 
						
							| 55 | 30 53 54 | sylancl | ⊢ ( 𝜑  →  { 𝑧  ∈  ( 𝑋  /   ∼  )  ∣  ∀ 𝑢  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( 𝑢  ·  𝑧 )  =  𝑧 }  ∈  Fin ) | 
						
							| 56 |  | hashcl | ⊢ ( { 𝑧  ∈  ( 𝑋  /   ∼  )  ∣  ∀ 𝑢  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( 𝑢  ·  𝑧 )  =  𝑧 }  ∈  Fin  →  ( ♯ ‘ { 𝑧  ∈  ( 𝑋  /   ∼  )  ∣  ∀ 𝑢  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( 𝑢  ·  𝑧 )  =  𝑧 } )  ∈  ℕ0 ) | 
						
							| 57 | 55 56 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ { 𝑧  ∈  ( 𝑋  /   ∼  )  ∣  ∀ 𝑢  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( 𝑢  ·  𝑧 )  =  𝑧 } )  ∈  ℕ0 ) | 
						
							| 58 | 57 | nn0zd | ⊢ ( 𝜑  →  ( ♯ ‘ { 𝑧  ∈  ( 𝑋  /   ∼  )  ∣  ∀ 𝑢  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( 𝑢  ·  𝑧 )  =  𝑧 } )  ∈  ℤ ) | 
						
							| 59 |  | eqid | ⊢ ( Base ‘ ( 𝐺  ↾s  𝐻 ) )  =  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) | 
						
							| 60 | 1 2 3 4 5 6 7 | sylow2blem2 | ⊢ ( 𝜑  →   ·   ∈  ( ( 𝐺  ↾s  𝐻 )  GrpAct  ( 𝑋  /   ∼  ) ) ) | 
						
							| 61 |  | eqid | ⊢ ( 𝐺  ↾s  𝐻 )  =  ( 𝐺  ↾s  𝐻 ) | 
						
							| 62 | 61 | subgbas | ⊢ ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  →  𝐻  =  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ) | 
						
							| 63 | 3 62 | syl | ⊢ ( 𝜑  →  𝐻  =  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ) | 
						
							| 64 | 1 | subgss | ⊢ ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  →  𝐻  ⊆  𝑋 ) | 
						
							| 65 | 3 64 | syl | ⊢ ( 𝜑  →  𝐻  ⊆  𝑋 ) | 
						
							| 66 | 2 65 | ssfid | ⊢ ( 𝜑  →  𝐻  ∈  Fin ) | 
						
							| 67 | 63 66 | eqeltrrd | ⊢ ( 𝜑  →  ( Base ‘ ( 𝐺  ↾s  𝐻 ) )  ∈  Fin ) | 
						
							| 68 |  | eqid | ⊢ { 𝑧  ∈  ( 𝑋  /   ∼  )  ∣  ∀ 𝑢  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( 𝑢  ·  𝑧 )  =  𝑧 }  =  { 𝑧  ∈  ( 𝑋  /   ∼  )  ∣  ∀ 𝑢  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( 𝑢  ·  𝑧 )  =  𝑧 } | 
						
							| 69 |  | eqid | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  ( 𝑋  /   ∼  )  ∧  ∃ 𝑔  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( 𝑔  ·  𝑥 )  =  𝑦 ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( { 𝑥 ,  𝑦 }  ⊆  ( 𝑋  /   ∼  )  ∧  ∃ 𝑔  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( 𝑔  ·  𝑥 )  =  𝑦 ) } | 
						
							| 70 | 59 60 8 67 30 68 69 | sylow2a | ⊢ ( 𝜑  →  𝑃  ∥  ( ( ♯ ‘ ( 𝑋  /   ∼  ) )  −  ( ♯ ‘ { 𝑧  ∈  ( 𝑋  /   ∼  )  ∣  ∀ 𝑢  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( 𝑢  ·  𝑧 )  =  𝑧 } ) ) ) | 
						
							| 71 |  | dvdssub2 | ⊢ ( ( ( 𝑃  ∈  ℤ  ∧  ( ♯ ‘ ( 𝑋  /   ∼  ) )  ∈  ℤ  ∧  ( ♯ ‘ { 𝑧  ∈  ( 𝑋  /   ∼  )  ∣  ∀ 𝑢  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( 𝑢  ·  𝑧 )  =  𝑧 } )  ∈  ℤ )  ∧  𝑃  ∥  ( ( ♯ ‘ ( 𝑋  /   ∼  ) )  −  ( ♯ ‘ { 𝑧  ∈  ( 𝑋  /   ∼  )  ∣  ∀ 𝑢  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( 𝑢  ·  𝑧 )  =  𝑧 } ) ) )  →  ( 𝑃  ∥  ( ♯ ‘ ( 𝑋  /   ∼  ) )  ↔  𝑃  ∥  ( ♯ ‘ { 𝑧  ∈  ( 𝑋  /   ∼  )  ∣  ∀ 𝑢  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( 𝑢  ·  𝑧 )  =  𝑧 } ) ) ) | 
						
							| 72 | 51 52 58 70 71 | syl31anc | ⊢ ( 𝜑  →  ( 𝑃  ∥  ( ♯ ‘ ( 𝑋  /   ∼  ) )  ↔  𝑃  ∥  ( ♯ ‘ { 𝑧  ∈  ( 𝑋  /   ∼  )  ∣  ∀ 𝑢  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( 𝑢  ·  𝑧 )  =  𝑧 } ) ) ) | 
						
							| 73 | 49 72 | mtbid | ⊢ ( 𝜑  →  ¬  𝑃  ∥  ( ♯ ‘ { 𝑧  ∈  ( 𝑋  /   ∼  )  ∣  ∀ 𝑢  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( 𝑢  ·  𝑧 )  =  𝑧 } ) ) | 
						
							| 74 |  | hasheq0 | ⊢ ( { 𝑧  ∈  ( 𝑋  /   ∼  )  ∣  ∀ 𝑢  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( 𝑢  ·  𝑧 )  =  𝑧 }  ∈  Fin  →  ( ( ♯ ‘ { 𝑧  ∈  ( 𝑋  /   ∼  )  ∣  ∀ 𝑢  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( 𝑢  ·  𝑧 )  =  𝑧 } )  =  0  ↔  { 𝑧  ∈  ( 𝑋  /   ∼  )  ∣  ∀ 𝑢  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( 𝑢  ·  𝑧 )  =  𝑧 }  =  ∅ ) ) | 
						
							| 75 | 55 74 | syl | ⊢ ( 𝜑  →  ( ( ♯ ‘ { 𝑧  ∈  ( 𝑋  /   ∼  )  ∣  ∀ 𝑢  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( 𝑢  ·  𝑧 )  =  𝑧 } )  =  0  ↔  { 𝑧  ∈  ( 𝑋  /   ∼  )  ∣  ∀ 𝑢  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( 𝑢  ·  𝑧 )  =  𝑧 }  =  ∅ ) ) | 
						
							| 76 |  | dvds0 | ⊢ ( 𝑃  ∈  ℤ  →  𝑃  ∥  0 ) | 
						
							| 77 | 51 76 | syl | ⊢ ( 𝜑  →  𝑃  ∥  0 ) | 
						
							| 78 |  | breq2 | ⊢ ( ( ♯ ‘ { 𝑧  ∈  ( 𝑋  /   ∼  )  ∣  ∀ 𝑢  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( 𝑢  ·  𝑧 )  =  𝑧 } )  =  0  →  ( 𝑃  ∥  ( ♯ ‘ { 𝑧  ∈  ( 𝑋  /   ∼  )  ∣  ∀ 𝑢  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( 𝑢  ·  𝑧 )  =  𝑧 } )  ↔  𝑃  ∥  0 ) ) | 
						
							| 79 | 77 78 | syl5ibrcom | ⊢ ( 𝜑  →  ( ( ♯ ‘ { 𝑧  ∈  ( 𝑋  /   ∼  )  ∣  ∀ 𝑢  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( 𝑢  ·  𝑧 )  =  𝑧 } )  =  0  →  𝑃  ∥  ( ♯ ‘ { 𝑧  ∈  ( 𝑋  /   ∼  )  ∣  ∀ 𝑢  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( 𝑢  ·  𝑧 )  =  𝑧 } ) ) ) | 
						
							| 80 | 75 79 | sylbird | ⊢ ( 𝜑  →  ( { 𝑧  ∈  ( 𝑋  /   ∼  )  ∣  ∀ 𝑢  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( 𝑢  ·  𝑧 )  =  𝑧 }  =  ∅  →  𝑃  ∥  ( ♯ ‘ { 𝑧  ∈  ( 𝑋  /   ∼  )  ∣  ∀ 𝑢  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( 𝑢  ·  𝑧 )  =  𝑧 } ) ) ) | 
						
							| 81 | 80 | necon3bd | ⊢ ( 𝜑  →  ( ¬  𝑃  ∥  ( ♯ ‘ { 𝑧  ∈  ( 𝑋  /   ∼  )  ∣  ∀ 𝑢  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( 𝑢  ·  𝑧 )  =  𝑧 } )  →  { 𝑧  ∈  ( 𝑋  /   ∼  )  ∣  ∀ 𝑢  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( 𝑢  ·  𝑧 )  =  𝑧 }  ≠  ∅ ) ) | 
						
							| 82 | 73 81 | mpd | ⊢ ( 𝜑  →  { 𝑧  ∈  ( 𝑋  /   ∼  )  ∣  ∀ 𝑢  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( 𝑢  ·  𝑧 )  =  𝑧 }  ≠  ∅ ) | 
						
							| 83 |  | rabn0 | ⊢ ( { 𝑧  ∈  ( 𝑋  /   ∼  )  ∣  ∀ 𝑢  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( 𝑢  ·  𝑧 )  =  𝑧 }  ≠  ∅  ↔  ∃ 𝑧  ∈  ( 𝑋  /   ∼  ) ∀ 𝑢  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( 𝑢  ·  𝑧 )  =  𝑧 ) | 
						
							| 84 | 82 83 | sylib | ⊢ ( 𝜑  →  ∃ 𝑧  ∈  ( 𝑋  /   ∼  ) ∀ 𝑢  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( 𝑢  ·  𝑧 )  =  𝑧 ) | 
						
							| 85 | 63 | raleqdv | ⊢ ( 𝜑  →  ( ∀ 𝑢  ∈  𝐻 ( 𝑢  ·  𝑧 )  =  𝑧  ↔  ∀ 𝑢  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( 𝑢  ·  𝑧 )  =  𝑧 ) ) | 
						
							| 86 | 85 | rexbidv | ⊢ ( 𝜑  →  ( ∃ 𝑧  ∈  ( 𝑋  /   ∼  ) ∀ 𝑢  ∈  𝐻 ( 𝑢  ·  𝑧 )  =  𝑧  ↔  ∃ 𝑧  ∈  ( 𝑋  /   ∼  ) ∀ 𝑢  ∈  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ( 𝑢  ·  𝑧 )  =  𝑧 ) ) | 
						
							| 87 | 84 86 | mpbird | ⊢ ( 𝜑  →  ∃ 𝑧  ∈  ( 𝑋  /   ∼  ) ∀ 𝑢  ∈  𝐻 ( 𝑢  ·  𝑧 )  =  𝑧 ) | 
						
							| 88 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 89 | 88 | elqs | ⊢ ( 𝑧  ∈  ( 𝑋  /   ∼  )  ↔  ∃ 𝑔  ∈  𝑋 𝑧  =  [ 𝑔 ]  ∼  ) | 
						
							| 90 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝑧  =  [ 𝑔 ]  ∼  ) )  ∧  ( 𝑢  ∈  𝐻  ∧  ( 𝑢  ·  𝑧 )  =  𝑧 ) )  →  𝑧  =  [ 𝑔 ]  ∼  ) | 
						
							| 91 | 90 | oveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝑧  =  [ 𝑔 ]  ∼  ) )  ∧  ( 𝑢  ∈  𝐻  ∧  ( 𝑢  ·  𝑧 )  =  𝑧 ) )  →  ( 𝑢  ·  𝑧 )  =  ( 𝑢  ·  [ 𝑔 ]  ∼  ) ) | 
						
							| 92 |  | simprr | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝑧  =  [ 𝑔 ]  ∼  ) )  ∧  ( 𝑢  ∈  𝐻  ∧  ( 𝑢  ·  𝑧 )  =  𝑧 ) )  →  ( 𝑢  ·  𝑧 )  =  𝑧 ) | 
						
							| 93 |  | simpll | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝑧  =  [ 𝑔 ]  ∼  ) )  ∧  ( 𝑢  ∈  𝐻  ∧  ( 𝑢  ·  𝑧 )  =  𝑧 ) )  →  𝜑 ) | 
						
							| 94 |  | simprl | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝑧  =  [ 𝑔 ]  ∼  ) )  ∧  ( 𝑢  ∈  𝐻  ∧  ( 𝑢  ·  𝑧 )  =  𝑧 ) )  →  𝑢  ∈  𝐻 ) | 
						
							| 95 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝑧  =  [ 𝑔 ]  ∼  ) )  ∧  ( 𝑢  ∈  𝐻  ∧  ( 𝑢  ·  𝑧 )  =  𝑧 ) )  →  𝑔  ∈  𝑋 ) | 
						
							| 96 | 1 2 3 4 5 6 7 | sylow2blem1 | ⊢ ( ( 𝜑  ∧  𝑢  ∈  𝐻  ∧  𝑔  ∈  𝑋 )  →  ( 𝑢  ·  [ 𝑔 ]  ∼  )  =  [ ( 𝑢  +  𝑔 ) ]  ∼  ) | 
						
							| 97 | 93 94 95 96 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝑧  =  [ 𝑔 ]  ∼  ) )  ∧  ( 𝑢  ∈  𝐻  ∧  ( 𝑢  ·  𝑧 )  =  𝑧 ) )  →  ( 𝑢  ·  [ 𝑔 ]  ∼  )  =  [ ( 𝑢  +  𝑔 ) ]  ∼  ) | 
						
							| 98 | 91 92 97 | 3eqtr3d | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝑧  =  [ 𝑔 ]  ∼  ) )  ∧  ( 𝑢  ∈  𝐻  ∧  ( 𝑢  ·  𝑧 )  =  𝑧 ) )  →  𝑧  =  [ ( 𝑢  +  𝑔 ) ]  ∼  ) | 
						
							| 99 | 90 98 | eqtr3d | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝑧  =  [ 𝑔 ]  ∼  ) )  ∧  ( 𝑢  ∈  𝐻  ∧  ( 𝑢  ·  𝑧 )  =  𝑧 ) )  →  [ 𝑔 ]  ∼   =  [ ( 𝑢  +  𝑔 ) ]  ∼  ) | 
						
							| 100 | 28 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝑧  =  [ 𝑔 ]  ∼  ) )  ∧  ( 𝑢  ∈  𝐻  ∧  ( 𝑢  ·  𝑧 )  =  𝑧 ) )  →   ∼   Er  𝑋 ) | 
						
							| 101 | 100 95 | erth | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝑧  =  [ 𝑔 ]  ∼  ) )  ∧  ( 𝑢  ∈  𝐻  ∧  ( 𝑢  ·  𝑧 )  =  𝑧 ) )  →  ( 𝑔  ∼  ( 𝑢  +  𝑔 )  ↔  [ 𝑔 ]  ∼   =  [ ( 𝑢  +  𝑔 ) ]  ∼  ) ) | 
						
							| 102 | 99 101 | mpbird | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝑧  =  [ 𝑔 ]  ∼  ) )  ∧  ( 𝑢  ∈  𝐻  ∧  ( 𝑢  ·  𝑧 )  =  𝑧 ) )  →  𝑔  ∼  ( 𝑢  +  𝑔 ) ) | 
						
							| 103 | 14 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝑧  =  [ 𝑔 ]  ∼  ) )  ∧  ( 𝑢  ∈  𝐻  ∧  ( 𝑢  ·  𝑧 )  =  𝑧 ) )  →  𝐺  ∈  Grp ) | 
						
							| 104 | 39 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝑧  =  [ 𝑔 ]  ∼  ) )  ∧  ( 𝑢  ∈  𝐻  ∧  ( 𝑢  ·  𝑧 )  =  𝑧 ) )  →  𝐾  ⊆  𝑋 ) | 
						
							| 105 |  | eqid | ⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 ) | 
						
							| 106 | 1 105 5 6 | eqgval | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐾  ⊆  𝑋 )  →  ( 𝑔  ∼  ( 𝑢  +  𝑔 )  ↔  ( 𝑔  ∈  𝑋  ∧  ( 𝑢  +  𝑔 )  ∈  𝑋  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 )  +  ( 𝑢  +  𝑔 ) )  ∈  𝐾 ) ) ) | 
						
							| 107 | 103 104 106 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝑧  =  [ 𝑔 ]  ∼  ) )  ∧  ( 𝑢  ∈  𝐻  ∧  ( 𝑢  ·  𝑧 )  =  𝑧 ) )  →  ( 𝑔  ∼  ( 𝑢  +  𝑔 )  ↔  ( 𝑔  ∈  𝑋  ∧  ( 𝑢  +  𝑔 )  ∈  𝑋  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 )  +  ( 𝑢  +  𝑔 ) )  ∈  𝐾 ) ) ) | 
						
							| 108 | 102 107 | mpbid | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝑧  =  [ 𝑔 ]  ∼  ) )  ∧  ( 𝑢  ∈  𝐻  ∧  ( 𝑢  ·  𝑧 )  =  𝑧 ) )  →  ( 𝑔  ∈  𝑋  ∧  ( 𝑢  +  𝑔 )  ∈  𝑋  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 )  +  ( 𝑢  +  𝑔 ) )  ∈  𝐾 ) ) | 
						
							| 109 | 108 | simp3d | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝑧  =  [ 𝑔 ]  ∼  ) )  ∧  ( 𝑢  ∈  𝐻  ∧  ( 𝑢  ·  𝑧 )  =  𝑧 ) )  →  ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 )  +  ( 𝑢  +  𝑔 ) )  ∈  𝐾 ) | 
						
							| 110 |  | oveq2 | ⊢ ( 𝑥  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 )  +  ( 𝑢  +  𝑔 ) )  →  ( 𝑔  +  𝑥 )  =  ( 𝑔  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 )  +  ( 𝑢  +  𝑔 ) ) ) ) | 
						
							| 111 | 110 | oveq1d | ⊢ ( 𝑥  =  ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 )  +  ( 𝑢  +  𝑔 ) )  →  ( ( 𝑔  +  𝑥 )  −  𝑔 )  =  ( ( 𝑔  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 )  +  ( 𝑢  +  𝑔 ) ) )  −  𝑔 ) ) | 
						
							| 112 |  | eqid | ⊢ ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) )  =  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) | 
						
							| 113 |  | ovex | ⊢ ( ( 𝑔  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 )  +  ( 𝑢  +  𝑔 ) ) )  −  𝑔 )  ∈  V | 
						
							| 114 | 111 112 113 | fvmpt | ⊢ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 )  +  ( 𝑢  +  𝑔 ) )  ∈  𝐾  →  ( ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 )  +  ( 𝑢  +  𝑔 ) ) )  =  ( ( 𝑔  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 )  +  ( 𝑢  +  𝑔 ) ) )  −  𝑔 ) ) | 
						
							| 115 | 109 114 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝑧  =  [ 𝑔 ]  ∼  ) )  ∧  ( 𝑢  ∈  𝐻  ∧  ( 𝑢  ·  𝑧 )  =  𝑧 ) )  →  ( ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 )  +  ( 𝑢  +  𝑔 ) ) )  =  ( ( 𝑔  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 )  +  ( 𝑢  +  𝑔 ) ) )  −  𝑔 ) ) | 
						
							| 116 | 1 5 34 105 | grprinv | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑔  ∈  𝑋 )  →  ( 𝑔  +  ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 117 | 103 95 116 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝑧  =  [ 𝑔 ]  ∼  ) )  ∧  ( 𝑢  ∈  𝐻  ∧  ( 𝑢  ·  𝑧 )  =  𝑧 ) )  →  ( 𝑔  +  ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 118 | 117 | oveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝑧  =  [ 𝑔 ]  ∼  ) )  ∧  ( 𝑢  ∈  𝐻  ∧  ( 𝑢  ·  𝑧 )  =  𝑧 ) )  →  ( ( 𝑔  +  ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) )  +  ( 𝑢  +  𝑔 ) )  =  ( ( 0g ‘ 𝐺 )  +  ( 𝑢  +  𝑔 ) ) ) | 
						
							| 119 | 1 105 | grpinvcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑔  ∈  𝑋 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑔 )  ∈  𝑋 ) | 
						
							| 120 | 103 95 119 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝑧  =  [ 𝑔 ]  ∼  ) )  ∧  ( 𝑢  ∈  𝐻  ∧  ( 𝑢  ·  𝑧 )  =  𝑧 ) )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑔 )  ∈  𝑋 ) | 
						
							| 121 | 65 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝑧  =  [ 𝑔 ]  ∼  ) )  ∧  ( 𝑢  ∈  𝐻  ∧  ( 𝑢  ·  𝑧 )  =  𝑧 ) )  →  𝐻  ⊆  𝑋 ) | 
						
							| 122 | 121 94 | sseldd | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝑧  =  [ 𝑔 ]  ∼  ) )  ∧  ( 𝑢  ∈  𝐻  ∧  ( 𝑢  ·  𝑧 )  =  𝑧 ) )  →  𝑢  ∈  𝑋 ) | 
						
							| 123 | 1 5 | grpcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑢  ∈  𝑋  ∧  𝑔  ∈  𝑋 )  →  ( 𝑢  +  𝑔 )  ∈  𝑋 ) | 
						
							| 124 | 103 122 95 123 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝑧  =  [ 𝑔 ]  ∼  ) )  ∧  ( 𝑢  ∈  𝐻  ∧  ( 𝑢  ·  𝑧 )  =  𝑧 ) )  →  ( 𝑢  +  𝑔 )  ∈  𝑋 ) | 
						
							| 125 | 1 5 | grpass | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑔  ∈  𝑋  ∧  ( ( invg ‘ 𝐺 ) ‘ 𝑔 )  ∈  𝑋  ∧  ( 𝑢  +  𝑔 )  ∈  𝑋 ) )  →  ( ( 𝑔  +  ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) )  +  ( 𝑢  +  𝑔 ) )  =  ( 𝑔  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 )  +  ( 𝑢  +  𝑔 ) ) ) ) | 
						
							| 126 | 103 95 120 124 125 | syl13anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝑧  =  [ 𝑔 ]  ∼  ) )  ∧  ( 𝑢  ∈  𝐻  ∧  ( 𝑢  ·  𝑧 )  =  𝑧 ) )  →  ( ( 𝑔  +  ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) )  +  ( 𝑢  +  𝑔 ) )  =  ( 𝑔  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 )  +  ( 𝑢  +  𝑔 ) ) ) ) | 
						
							| 127 | 1 5 34 | grplid | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑢  +  𝑔 )  ∈  𝑋 )  →  ( ( 0g ‘ 𝐺 )  +  ( 𝑢  +  𝑔 ) )  =  ( 𝑢  +  𝑔 ) ) | 
						
							| 128 | 103 124 127 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝑧  =  [ 𝑔 ]  ∼  ) )  ∧  ( 𝑢  ∈  𝐻  ∧  ( 𝑢  ·  𝑧 )  =  𝑧 ) )  →  ( ( 0g ‘ 𝐺 )  +  ( 𝑢  +  𝑔 ) )  =  ( 𝑢  +  𝑔 ) ) | 
						
							| 129 | 118 126 128 | 3eqtr3d | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝑧  =  [ 𝑔 ]  ∼  ) )  ∧  ( 𝑢  ∈  𝐻  ∧  ( 𝑢  ·  𝑧 )  =  𝑧 ) )  →  ( 𝑔  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 )  +  ( 𝑢  +  𝑔 ) ) )  =  ( 𝑢  +  𝑔 ) ) | 
						
							| 130 | 129 | oveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝑧  =  [ 𝑔 ]  ∼  ) )  ∧  ( 𝑢  ∈  𝐻  ∧  ( 𝑢  ·  𝑧 )  =  𝑧 ) )  →  ( ( 𝑔  +  ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 )  +  ( 𝑢  +  𝑔 ) ) )  −  𝑔 )  =  ( ( 𝑢  +  𝑔 )  −  𝑔 ) ) | 
						
							| 131 | 1 5 10 | grppncan | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑢  ∈  𝑋  ∧  𝑔  ∈  𝑋 )  →  ( ( 𝑢  +  𝑔 )  −  𝑔 )  =  𝑢 ) | 
						
							| 132 | 103 122 95 131 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝑧  =  [ 𝑔 ]  ∼  ) )  ∧  ( 𝑢  ∈  𝐻  ∧  ( 𝑢  ·  𝑧 )  =  𝑧 ) )  →  ( ( 𝑢  +  𝑔 )  −  𝑔 )  =  𝑢 ) | 
						
							| 133 | 115 130 132 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝑧  =  [ 𝑔 ]  ∼  ) )  ∧  ( 𝑢  ∈  𝐻  ∧  ( 𝑢  ·  𝑧 )  =  𝑧 ) )  →  ( ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 )  +  ( 𝑢  +  𝑔 ) ) )  =  𝑢 ) | 
						
							| 134 |  | ovex | ⊢ ( ( 𝑔  +  𝑥 )  −  𝑔 )  ∈  V | 
						
							| 135 | 134 112 | fnmpti | ⊢ ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) )  Fn  𝐾 | 
						
							| 136 |  | fnfvelrn | ⊢ ( ( ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) )  Fn  𝐾  ∧  ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 )  +  ( 𝑢  +  𝑔 ) )  ∈  𝐾 )  →  ( ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 )  +  ( 𝑢  +  𝑔 ) ) )  ∈  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ) | 
						
							| 137 | 135 109 136 | sylancr | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝑧  =  [ 𝑔 ]  ∼  ) )  ∧  ( 𝑢  ∈  𝐻  ∧  ( 𝑢  ·  𝑧 )  =  𝑧 ) )  →  ( ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑔 )  +  ( 𝑢  +  𝑔 ) ) )  ∈  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ) | 
						
							| 138 | 133 137 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝑧  =  [ 𝑔 ]  ∼  ) )  ∧  ( 𝑢  ∈  𝐻  ∧  ( 𝑢  ·  𝑧 )  =  𝑧 ) )  →  𝑢  ∈  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ) | 
						
							| 139 | 138 | expr | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝑧  =  [ 𝑔 ]  ∼  ) )  ∧  𝑢  ∈  𝐻 )  →  ( ( 𝑢  ·  𝑧 )  =  𝑧  →  𝑢  ∈  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ) ) | 
						
							| 140 | 139 | ralimdva | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝑧  =  [ 𝑔 ]  ∼  ) )  →  ( ∀ 𝑢  ∈  𝐻 ( 𝑢  ·  𝑧 )  =  𝑧  →  ∀ 𝑢  ∈  𝐻 𝑢  ∈  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ) ) | 
						
							| 141 | 140 | imp | ⊢ ( ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝑧  =  [ 𝑔 ]  ∼  ) )  ∧  ∀ 𝑢  ∈  𝐻 ( 𝑢  ·  𝑧 )  =  𝑧 )  →  ∀ 𝑢  ∈  𝐻 𝑢  ∈  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ) | 
						
							| 142 | 141 | an32s | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑢  ∈  𝐻 ( 𝑢  ·  𝑧 )  =  𝑧 )  ∧  ( 𝑔  ∈  𝑋  ∧  𝑧  =  [ 𝑔 ]  ∼  ) )  →  ∀ 𝑢  ∈  𝐻 𝑢  ∈  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ) | 
						
							| 143 |  | dfss3 | ⊢ ( 𝐻  ⊆  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) )  ↔  ∀ 𝑢  ∈  𝐻 𝑢  ∈  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ) | 
						
							| 144 | 142 143 | sylibr | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑢  ∈  𝐻 ( 𝑢  ·  𝑧 )  =  𝑧 )  ∧  ( 𝑔  ∈  𝑋  ∧  𝑧  =  [ 𝑔 ]  ∼  ) )  →  𝐻  ⊆  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ) | 
						
							| 145 | 144 | expr | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑢  ∈  𝐻 ( 𝑢  ·  𝑧 )  =  𝑧 )  ∧  𝑔  ∈  𝑋 )  →  ( 𝑧  =  [ 𝑔 ]  ∼   →  𝐻  ⊆  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ) ) | 
						
							| 146 | 145 | reximdva | ⊢ ( ( 𝜑  ∧  ∀ 𝑢  ∈  𝐻 ( 𝑢  ·  𝑧 )  =  𝑧 )  →  ( ∃ 𝑔  ∈  𝑋 𝑧  =  [ 𝑔 ]  ∼   →  ∃ 𝑔  ∈  𝑋 𝐻  ⊆  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ) ) | 
						
							| 147 | 146 | ex | ⊢ ( 𝜑  →  ( ∀ 𝑢  ∈  𝐻 ( 𝑢  ·  𝑧 )  =  𝑧  →  ( ∃ 𝑔  ∈  𝑋 𝑧  =  [ 𝑔 ]  ∼   →  ∃ 𝑔  ∈  𝑋 𝐻  ⊆  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ) ) ) | 
						
							| 148 | 147 | com23 | ⊢ ( 𝜑  →  ( ∃ 𝑔  ∈  𝑋 𝑧  =  [ 𝑔 ]  ∼   →  ( ∀ 𝑢  ∈  𝐻 ( 𝑢  ·  𝑧 )  =  𝑧  →  ∃ 𝑔  ∈  𝑋 𝐻  ⊆  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ) ) ) | 
						
							| 149 | 89 148 | biimtrid | ⊢ ( 𝜑  →  ( 𝑧  ∈  ( 𝑋  /   ∼  )  →  ( ∀ 𝑢  ∈  𝐻 ( 𝑢  ·  𝑧 )  =  𝑧  →  ∃ 𝑔  ∈  𝑋 𝐻  ⊆  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ) ) ) | 
						
							| 150 | 149 | rexlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑧  ∈  ( 𝑋  /   ∼  ) ∀ 𝑢  ∈  𝐻 ( 𝑢  ·  𝑧 )  =  𝑧  →  ∃ 𝑔  ∈  𝑋 𝐻  ⊆  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ) ) | 
						
							| 151 | 87 150 | mpd | ⊢ ( 𝜑  →  ∃ 𝑔  ∈  𝑋 𝐻  ⊆  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ) |