| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sylow2b.x |
|- X = ( Base ` G ) |
| 2 |
|
sylow2b.xf |
|- ( ph -> X e. Fin ) |
| 3 |
|
sylow2b.h |
|- ( ph -> H e. ( SubGrp ` G ) ) |
| 4 |
|
sylow2b.k |
|- ( ph -> K e. ( SubGrp ` G ) ) |
| 5 |
|
sylow2b.a |
|- .+ = ( +g ` G ) |
| 6 |
|
sylow2b.r |
|- .~ = ( G ~QG K ) |
| 7 |
|
sylow2b.m |
|- .x. = ( x e. H , y e. ( X /. .~ ) |-> ran ( z e. y |-> ( x .+ z ) ) ) |
| 8 |
|
sylow2blem3.hp |
|- ( ph -> P pGrp ( G |`s H ) ) |
| 9 |
|
sylow2blem3.kn |
|- ( ph -> ( # ` K ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) |
| 10 |
|
sylow2blem3.d |
|- .- = ( -g ` G ) |
| 11 |
|
pgpprm |
|- ( P pGrp ( G |`s H ) -> P e. Prime ) |
| 12 |
8 11
|
syl |
|- ( ph -> P e. Prime ) |
| 13 |
|
subgrcl |
|- ( H e. ( SubGrp ` G ) -> G e. Grp ) |
| 14 |
3 13
|
syl |
|- ( ph -> G e. Grp ) |
| 15 |
1
|
grpbn0 |
|- ( G e. Grp -> X =/= (/) ) |
| 16 |
14 15
|
syl |
|- ( ph -> X =/= (/) ) |
| 17 |
|
hashnncl |
|- ( X e. Fin -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) |
| 18 |
2 17
|
syl |
|- ( ph -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) |
| 19 |
16 18
|
mpbird |
|- ( ph -> ( # ` X ) e. NN ) |
| 20 |
|
pcndvds2 |
|- ( ( P e. Prime /\ ( # ` X ) e. NN ) -> -. P || ( ( # ` X ) / ( P ^ ( P pCnt ( # ` X ) ) ) ) ) |
| 21 |
12 19 20
|
syl2anc |
|- ( ph -> -. P || ( ( # ` X ) / ( P ^ ( P pCnt ( # ` X ) ) ) ) ) |
| 22 |
1 6 4 2
|
lagsubg2 |
|- ( ph -> ( # ` X ) = ( ( # ` ( X /. .~ ) ) x. ( # ` K ) ) ) |
| 23 |
22
|
oveq1d |
|- ( ph -> ( ( # ` X ) / ( # ` K ) ) = ( ( ( # ` ( X /. .~ ) ) x. ( # ` K ) ) / ( # ` K ) ) ) |
| 24 |
9
|
oveq2d |
|- ( ph -> ( ( # ` X ) / ( # ` K ) ) = ( ( # ` X ) / ( P ^ ( P pCnt ( # ` X ) ) ) ) ) |
| 25 |
|
pwfi |
|- ( X e. Fin <-> ~P X e. Fin ) |
| 26 |
2 25
|
sylib |
|- ( ph -> ~P X e. Fin ) |
| 27 |
1 6
|
eqger |
|- ( K e. ( SubGrp ` G ) -> .~ Er X ) |
| 28 |
4 27
|
syl |
|- ( ph -> .~ Er X ) |
| 29 |
28
|
qsss |
|- ( ph -> ( X /. .~ ) C_ ~P X ) |
| 30 |
26 29
|
ssfid |
|- ( ph -> ( X /. .~ ) e. Fin ) |
| 31 |
|
hashcl |
|- ( ( X /. .~ ) e. Fin -> ( # ` ( X /. .~ ) ) e. NN0 ) |
| 32 |
30 31
|
syl |
|- ( ph -> ( # ` ( X /. .~ ) ) e. NN0 ) |
| 33 |
32
|
nn0cnd |
|- ( ph -> ( # ` ( X /. .~ ) ) e. CC ) |
| 34 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 35 |
34
|
subg0cl |
|- ( K e. ( SubGrp ` G ) -> ( 0g ` G ) e. K ) |
| 36 |
4 35
|
syl |
|- ( ph -> ( 0g ` G ) e. K ) |
| 37 |
36
|
ne0d |
|- ( ph -> K =/= (/) ) |
| 38 |
1
|
subgss |
|- ( K e. ( SubGrp ` G ) -> K C_ X ) |
| 39 |
4 38
|
syl |
|- ( ph -> K C_ X ) |
| 40 |
2 39
|
ssfid |
|- ( ph -> K e. Fin ) |
| 41 |
|
hashnncl |
|- ( K e. Fin -> ( ( # ` K ) e. NN <-> K =/= (/) ) ) |
| 42 |
40 41
|
syl |
|- ( ph -> ( ( # ` K ) e. NN <-> K =/= (/) ) ) |
| 43 |
37 42
|
mpbird |
|- ( ph -> ( # ` K ) e. NN ) |
| 44 |
43
|
nncnd |
|- ( ph -> ( # ` K ) e. CC ) |
| 45 |
43
|
nnne0d |
|- ( ph -> ( # ` K ) =/= 0 ) |
| 46 |
33 44 45
|
divcan4d |
|- ( ph -> ( ( ( # ` ( X /. .~ ) ) x. ( # ` K ) ) / ( # ` K ) ) = ( # ` ( X /. .~ ) ) ) |
| 47 |
23 24 46
|
3eqtr3d |
|- ( ph -> ( ( # ` X ) / ( P ^ ( P pCnt ( # ` X ) ) ) ) = ( # ` ( X /. .~ ) ) ) |
| 48 |
47
|
breq2d |
|- ( ph -> ( P || ( ( # ` X ) / ( P ^ ( P pCnt ( # ` X ) ) ) ) <-> P || ( # ` ( X /. .~ ) ) ) ) |
| 49 |
21 48
|
mtbid |
|- ( ph -> -. P || ( # ` ( X /. .~ ) ) ) |
| 50 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
| 51 |
12 50
|
syl |
|- ( ph -> P e. ZZ ) |
| 52 |
32
|
nn0zd |
|- ( ph -> ( # ` ( X /. .~ ) ) e. ZZ ) |
| 53 |
|
ssrab2 |
|- { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } C_ ( X /. .~ ) |
| 54 |
|
ssfi |
|- ( ( ( X /. .~ ) e. Fin /\ { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } C_ ( X /. .~ ) ) -> { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } e. Fin ) |
| 55 |
30 53 54
|
sylancl |
|- ( ph -> { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } e. Fin ) |
| 56 |
|
hashcl |
|- ( { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } e. Fin -> ( # ` { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } ) e. NN0 ) |
| 57 |
55 56
|
syl |
|- ( ph -> ( # ` { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } ) e. NN0 ) |
| 58 |
57
|
nn0zd |
|- ( ph -> ( # ` { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } ) e. ZZ ) |
| 59 |
|
eqid |
|- ( Base ` ( G |`s H ) ) = ( Base ` ( G |`s H ) ) |
| 60 |
1 2 3 4 5 6 7
|
sylow2blem2 |
|- ( ph -> .x. e. ( ( G |`s H ) GrpAct ( X /. .~ ) ) ) |
| 61 |
|
eqid |
|- ( G |`s H ) = ( G |`s H ) |
| 62 |
61
|
subgbas |
|- ( H e. ( SubGrp ` G ) -> H = ( Base ` ( G |`s H ) ) ) |
| 63 |
3 62
|
syl |
|- ( ph -> H = ( Base ` ( G |`s H ) ) ) |
| 64 |
1
|
subgss |
|- ( H e. ( SubGrp ` G ) -> H C_ X ) |
| 65 |
3 64
|
syl |
|- ( ph -> H C_ X ) |
| 66 |
2 65
|
ssfid |
|- ( ph -> H e. Fin ) |
| 67 |
63 66
|
eqeltrrd |
|- ( ph -> ( Base ` ( G |`s H ) ) e. Fin ) |
| 68 |
|
eqid |
|- { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } = { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } |
| 69 |
|
eqid |
|- { <. x , y >. | ( { x , y } C_ ( X /. .~ ) /\ E. g e. ( Base ` ( G |`s H ) ) ( g .x. x ) = y ) } = { <. x , y >. | ( { x , y } C_ ( X /. .~ ) /\ E. g e. ( Base ` ( G |`s H ) ) ( g .x. x ) = y ) } |
| 70 |
59 60 8 67 30 68 69
|
sylow2a |
|- ( ph -> P || ( ( # ` ( X /. .~ ) ) - ( # ` { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } ) ) ) |
| 71 |
|
dvdssub2 |
|- ( ( ( P e. ZZ /\ ( # ` ( X /. .~ ) ) e. ZZ /\ ( # ` { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } ) e. ZZ ) /\ P || ( ( # ` ( X /. .~ ) ) - ( # ` { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } ) ) ) -> ( P || ( # ` ( X /. .~ ) ) <-> P || ( # ` { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } ) ) ) |
| 72 |
51 52 58 70 71
|
syl31anc |
|- ( ph -> ( P || ( # ` ( X /. .~ ) ) <-> P || ( # ` { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } ) ) ) |
| 73 |
49 72
|
mtbid |
|- ( ph -> -. P || ( # ` { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } ) ) |
| 74 |
|
hasheq0 |
|- ( { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } e. Fin -> ( ( # ` { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } ) = 0 <-> { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } = (/) ) ) |
| 75 |
55 74
|
syl |
|- ( ph -> ( ( # ` { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } ) = 0 <-> { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } = (/) ) ) |
| 76 |
|
dvds0 |
|- ( P e. ZZ -> P || 0 ) |
| 77 |
51 76
|
syl |
|- ( ph -> P || 0 ) |
| 78 |
|
breq2 |
|- ( ( # ` { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } ) = 0 -> ( P || ( # ` { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } ) <-> P || 0 ) ) |
| 79 |
77 78
|
syl5ibrcom |
|- ( ph -> ( ( # ` { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } ) = 0 -> P || ( # ` { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } ) ) ) |
| 80 |
75 79
|
sylbird |
|- ( ph -> ( { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } = (/) -> P || ( # ` { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } ) ) ) |
| 81 |
80
|
necon3bd |
|- ( ph -> ( -. P || ( # ` { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } ) -> { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } =/= (/) ) ) |
| 82 |
73 81
|
mpd |
|- ( ph -> { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } =/= (/) ) |
| 83 |
|
rabn0 |
|- ( { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } =/= (/) <-> E. z e. ( X /. .~ ) A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z ) |
| 84 |
82 83
|
sylib |
|- ( ph -> E. z e. ( X /. .~ ) A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z ) |
| 85 |
63
|
raleqdv |
|- ( ph -> ( A. u e. H ( u .x. z ) = z <-> A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z ) ) |
| 86 |
85
|
rexbidv |
|- ( ph -> ( E. z e. ( X /. .~ ) A. u e. H ( u .x. z ) = z <-> E. z e. ( X /. .~ ) A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z ) ) |
| 87 |
84 86
|
mpbird |
|- ( ph -> E. z e. ( X /. .~ ) A. u e. H ( u .x. z ) = z ) |
| 88 |
|
vex |
|- z e. _V |
| 89 |
88
|
elqs |
|- ( z e. ( X /. .~ ) <-> E. g e. X z = [ g ] .~ ) |
| 90 |
|
simplrr |
|- ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> z = [ g ] .~ ) |
| 91 |
90
|
oveq2d |
|- ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ( u .x. z ) = ( u .x. [ g ] .~ ) ) |
| 92 |
|
simprr |
|- ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ( u .x. z ) = z ) |
| 93 |
|
simpll |
|- ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ph ) |
| 94 |
|
simprl |
|- ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> u e. H ) |
| 95 |
|
simplrl |
|- ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> g e. X ) |
| 96 |
1 2 3 4 5 6 7
|
sylow2blem1 |
|- ( ( ph /\ u e. H /\ g e. X ) -> ( u .x. [ g ] .~ ) = [ ( u .+ g ) ] .~ ) |
| 97 |
93 94 95 96
|
syl3anc |
|- ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ( u .x. [ g ] .~ ) = [ ( u .+ g ) ] .~ ) |
| 98 |
91 92 97
|
3eqtr3d |
|- ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> z = [ ( u .+ g ) ] .~ ) |
| 99 |
90 98
|
eqtr3d |
|- ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> [ g ] .~ = [ ( u .+ g ) ] .~ ) |
| 100 |
28
|
ad2antrr |
|- ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> .~ Er X ) |
| 101 |
100 95
|
erth |
|- ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ( g .~ ( u .+ g ) <-> [ g ] .~ = [ ( u .+ g ) ] .~ ) ) |
| 102 |
99 101
|
mpbird |
|- ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> g .~ ( u .+ g ) ) |
| 103 |
14
|
ad2antrr |
|- ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> G e. Grp ) |
| 104 |
39
|
ad2antrr |
|- ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> K C_ X ) |
| 105 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
| 106 |
1 105 5 6
|
eqgval |
|- ( ( G e. Grp /\ K C_ X ) -> ( g .~ ( u .+ g ) <-> ( g e. X /\ ( u .+ g ) e. X /\ ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) e. K ) ) ) |
| 107 |
103 104 106
|
syl2anc |
|- ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ( g .~ ( u .+ g ) <-> ( g e. X /\ ( u .+ g ) e. X /\ ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) e. K ) ) ) |
| 108 |
102 107
|
mpbid |
|- ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ( g e. X /\ ( u .+ g ) e. X /\ ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) e. K ) ) |
| 109 |
108
|
simp3d |
|- ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) e. K ) |
| 110 |
|
oveq2 |
|- ( x = ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) -> ( g .+ x ) = ( g .+ ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) ) ) |
| 111 |
110
|
oveq1d |
|- ( x = ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) -> ( ( g .+ x ) .- g ) = ( ( g .+ ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) ) .- g ) ) |
| 112 |
|
eqid |
|- ( x e. K |-> ( ( g .+ x ) .- g ) ) = ( x e. K |-> ( ( g .+ x ) .- g ) ) |
| 113 |
|
ovex |
|- ( ( g .+ ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) ) .- g ) e. _V |
| 114 |
111 112 113
|
fvmpt |
|- ( ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) e. K -> ( ( x e. K |-> ( ( g .+ x ) .- g ) ) ` ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) ) = ( ( g .+ ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) ) .- g ) ) |
| 115 |
109 114
|
syl |
|- ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ( ( x e. K |-> ( ( g .+ x ) .- g ) ) ` ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) ) = ( ( g .+ ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) ) .- g ) ) |
| 116 |
1 5 34 105
|
grprinv |
|- ( ( G e. Grp /\ g e. X ) -> ( g .+ ( ( invg ` G ) ` g ) ) = ( 0g ` G ) ) |
| 117 |
103 95 116
|
syl2anc |
|- ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ( g .+ ( ( invg ` G ) ` g ) ) = ( 0g ` G ) ) |
| 118 |
117
|
oveq1d |
|- ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ( ( g .+ ( ( invg ` G ) ` g ) ) .+ ( u .+ g ) ) = ( ( 0g ` G ) .+ ( u .+ g ) ) ) |
| 119 |
1 105
|
grpinvcl |
|- ( ( G e. Grp /\ g e. X ) -> ( ( invg ` G ) ` g ) e. X ) |
| 120 |
103 95 119
|
syl2anc |
|- ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ( ( invg ` G ) ` g ) e. X ) |
| 121 |
65
|
ad2antrr |
|- ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> H C_ X ) |
| 122 |
121 94
|
sseldd |
|- ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> u e. X ) |
| 123 |
1 5
|
grpcl |
|- ( ( G e. Grp /\ u e. X /\ g e. X ) -> ( u .+ g ) e. X ) |
| 124 |
103 122 95 123
|
syl3anc |
|- ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ( u .+ g ) e. X ) |
| 125 |
1 5
|
grpass |
|- ( ( G e. Grp /\ ( g e. X /\ ( ( invg ` G ) ` g ) e. X /\ ( u .+ g ) e. X ) ) -> ( ( g .+ ( ( invg ` G ) ` g ) ) .+ ( u .+ g ) ) = ( g .+ ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) ) ) |
| 126 |
103 95 120 124 125
|
syl13anc |
|- ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ( ( g .+ ( ( invg ` G ) ` g ) ) .+ ( u .+ g ) ) = ( g .+ ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) ) ) |
| 127 |
1 5 34
|
grplid |
|- ( ( G e. Grp /\ ( u .+ g ) e. X ) -> ( ( 0g ` G ) .+ ( u .+ g ) ) = ( u .+ g ) ) |
| 128 |
103 124 127
|
syl2anc |
|- ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ( ( 0g ` G ) .+ ( u .+ g ) ) = ( u .+ g ) ) |
| 129 |
118 126 128
|
3eqtr3d |
|- ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ( g .+ ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) ) = ( u .+ g ) ) |
| 130 |
129
|
oveq1d |
|- ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ( ( g .+ ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) ) .- g ) = ( ( u .+ g ) .- g ) ) |
| 131 |
1 5 10
|
grppncan |
|- ( ( G e. Grp /\ u e. X /\ g e. X ) -> ( ( u .+ g ) .- g ) = u ) |
| 132 |
103 122 95 131
|
syl3anc |
|- ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ( ( u .+ g ) .- g ) = u ) |
| 133 |
115 130 132
|
3eqtrd |
|- ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ( ( x e. K |-> ( ( g .+ x ) .- g ) ) ` ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) ) = u ) |
| 134 |
|
ovex |
|- ( ( g .+ x ) .- g ) e. _V |
| 135 |
134 112
|
fnmpti |
|- ( x e. K |-> ( ( g .+ x ) .- g ) ) Fn K |
| 136 |
|
fnfvelrn |
|- ( ( ( x e. K |-> ( ( g .+ x ) .- g ) ) Fn K /\ ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) e. K ) -> ( ( x e. K |-> ( ( g .+ x ) .- g ) ) ` ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) ) e. ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) |
| 137 |
135 109 136
|
sylancr |
|- ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ( ( x e. K |-> ( ( g .+ x ) .- g ) ) ` ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) ) e. ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) |
| 138 |
133 137
|
eqeltrrd |
|- ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> u e. ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) |
| 139 |
138
|
expr |
|- ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ u e. H ) -> ( ( u .x. z ) = z -> u e. ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) ) |
| 140 |
139
|
ralimdva |
|- ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) -> ( A. u e. H ( u .x. z ) = z -> A. u e. H u e. ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) ) |
| 141 |
140
|
imp |
|- ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ A. u e. H ( u .x. z ) = z ) -> A. u e. H u e. ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) |
| 142 |
141
|
an32s |
|- ( ( ( ph /\ A. u e. H ( u .x. z ) = z ) /\ ( g e. X /\ z = [ g ] .~ ) ) -> A. u e. H u e. ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) |
| 143 |
|
dfss3 |
|- ( H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) <-> A. u e. H u e. ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) |
| 144 |
142 143
|
sylibr |
|- ( ( ( ph /\ A. u e. H ( u .x. z ) = z ) /\ ( g e. X /\ z = [ g ] .~ ) ) -> H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) |
| 145 |
144
|
expr |
|- ( ( ( ph /\ A. u e. H ( u .x. z ) = z ) /\ g e. X ) -> ( z = [ g ] .~ -> H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) ) |
| 146 |
145
|
reximdva |
|- ( ( ph /\ A. u e. H ( u .x. z ) = z ) -> ( E. g e. X z = [ g ] .~ -> E. g e. X H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) ) |
| 147 |
146
|
ex |
|- ( ph -> ( A. u e. H ( u .x. z ) = z -> ( E. g e. X z = [ g ] .~ -> E. g e. X H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) ) ) |
| 148 |
147
|
com23 |
|- ( ph -> ( E. g e. X z = [ g ] .~ -> ( A. u e. H ( u .x. z ) = z -> E. g e. X H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) ) ) |
| 149 |
89 148
|
biimtrid |
|- ( ph -> ( z e. ( X /. .~ ) -> ( A. u e. H ( u .x. z ) = z -> E. g e. X H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) ) ) |
| 150 |
149
|
rexlimdv |
|- ( ph -> ( E. z e. ( X /. .~ ) A. u e. H ( u .x. z ) = z -> E. g e. X H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) ) |
| 151 |
87 150
|
mpd |
|- ( ph -> E. g e. X H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) |