| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sylow2b.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | sylow2b.xf |  |-  ( ph -> X e. Fin ) | 
						
							| 3 |  | sylow2b.h |  |-  ( ph -> H e. ( SubGrp ` G ) ) | 
						
							| 4 |  | sylow2b.k |  |-  ( ph -> K e. ( SubGrp ` G ) ) | 
						
							| 5 |  | sylow2b.a |  |-  .+ = ( +g ` G ) | 
						
							| 6 |  | sylow2b.r |  |-  .~ = ( G ~QG K ) | 
						
							| 7 |  | sylow2b.m |  |-  .x. = ( x e. H , y e. ( X /. .~ ) |-> ran ( z e. y |-> ( x .+ z ) ) ) | 
						
							| 8 |  | sylow2blem3.hp |  |-  ( ph -> P pGrp ( G |`s H ) ) | 
						
							| 9 |  | sylow2blem3.kn |  |-  ( ph -> ( # ` K ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) | 
						
							| 10 |  | sylow2blem3.d |  |-  .- = ( -g ` G ) | 
						
							| 11 |  | pgpprm |  |-  ( P pGrp ( G |`s H ) -> P e. Prime ) | 
						
							| 12 | 8 11 | syl |  |-  ( ph -> P e. Prime ) | 
						
							| 13 |  | subgrcl |  |-  ( H e. ( SubGrp ` G ) -> G e. Grp ) | 
						
							| 14 | 3 13 | syl |  |-  ( ph -> G e. Grp ) | 
						
							| 15 | 1 | grpbn0 |  |-  ( G e. Grp -> X =/= (/) ) | 
						
							| 16 | 14 15 | syl |  |-  ( ph -> X =/= (/) ) | 
						
							| 17 |  | hashnncl |  |-  ( X e. Fin -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) | 
						
							| 18 | 2 17 | syl |  |-  ( ph -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) | 
						
							| 19 | 16 18 | mpbird |  |-  ( ph -> ( # ` X ) e. NN ) | 
						
							| 20 |  | pcndvds2 |  |-  ( ( P e. Prime /\ ( # ` X ) e. NN ) -> -. P || ( ( # ` X ) / ( P ^ ( P pCnt ( # ` X ) ) ) ) ) | 
						
							| 21 | 12 19 20 | syl2anc |  |-  ( ph -> -. P || ( ( # ` X ) / ( P ^ ( P pCnt ( # ` X ) ) ) ) ) | 
						
							| 22 | 1 6 4 2 | lagsubg2 |  |-  ( ph -> ( # ` X ) = ( ( # ` ( X /. .~ ) ) x. ( # ` K ) ) ) | 
						
							| 23 | 22 | oveq1d |  |-  ( ph -> ( ( # ` X ) / ( # ` K ) ) = ( ( ( # ` ( X /. .~ ) ) x. ( # ` K ) ) / ( # ` K ) ) ) | 
						
							| 24 | 9 | oveq2d |  |-  ( ph -> ( ( # ` X ) / ( # ` K ) ) = ( ( # ` X ) / ( P ^ ( P pCnt ( # ` X ) ) ) ) ) | 
						
							| 25 |  | pwfi |  |-  ( X e. Fin <-> ~P X e. Fin ) | 
						
							| 26 | 2 25 | sylib |  |-  ( ph -> ~P X e. Fin ) | 
						
							| 27 | 1 6 | eqger |  |-  ( K e. ( SubGrp ` G ) -> .~ Er X ) | 
						
							| 28 | 4 27 | syl |  |-  ( ph -> .~ Er X ) | 
						
							| 29 | 28 | qsss |  |-  ( ph -> ( X /. .~ ) C_ ~P X ) | 
						
							| 30 | 26 29 | ssfid |  |-  ( ph -> ( X /. .~ ) e. Fin ) | 
						
							| 31 |  | hashcl |  |-  ( ( X /. .~ ) e. Fin -> ( # ` ( X /. .~ ) ) e. NN0 ) | 
						
							| 32 | 30 31 | syl |  |-  ( ph -> ( # ` ( X /. .~ ) ) e. NN0 ) | 
						
							| 33 | 32 | nn0cnd |  |-  ( ph -> ( # ` ( X /. .~ ) ) e. CC ) | 
						
							| 34 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 35 | 34 | subg0cl |  |-  ( K e. ( SubGrp ` G ) -> ( 0g ` G ) e. K ) | 
						
							| 36 | 4 35 | syl |  |-  ( ph -> ( 0g ` G ) e. K ) | 
						
							| 37 | 36 | ne0d |  |-  ( ph -> K =/= (/) ) | 
						
							| 38 | 1 | subgss |  |-  ( K e. ( SubGrp ` G ) -> K C_ X ) | 
						
							| 39 | 4 38 | syl |  |-  ( ph -> K C_ X ) | 
						
							| 40 | 2 39 | ssfid |  |-  ( ph -> K e. Fin ) | 
						
							| 41 |  | hashnncl |  |-  ( K e. Fin -> ( ( # ` K ) e. NN <-> K =/= (/) ) ) | 
						
							| 42 | 40 41 | syl |  |-  ( ph -> ( ( # ` K ) e. NN <-> K =/= (/) ) ) | 
						
							| 43 | 37 42 | mpbird |  |-  ( ph -> ( # ` K ) e. NN ) | 
						
							| 44 | 43 | nncnd |  |-  ( ph -> ( # ` K ) e. CC ) | 
						
							| 45 | 43 | nnne0d |  |-  ( ph -> ( # ` K ) =/= 0 ) | 
						
							| 46 | 33 44 45 | divcan4d |  |-  ( ph -> ( ( ( # ` ( X /. .~ ) ) x. ( # ` K ) ) / ( # ` K ) ) = ( # ` ( X /. .~ ) ) ) | 
						
							| 47 | 23 24 46 | 3eqtr3d |  |-  ( ph -> ( ( # ` X ) / ( P ^ ( P pCnt ( # ` X ) ) ) ) = ( # ` ( X /. .~ ) ) ) | 
						
							| 48 | 47 | breq2d |  |-  ( ph -> ( P || ( ( # ` X ) / ( P ^ ( P pCnt ( # ` X ) ) ) ) <-> P || ( # ` ( X /. .~ ) ) ) ) | 
						
							| 49 | 21 48 | mtbid |  |-  ( ph -> -. P || ( # ` ( X /. .~ ) ) ) | 
						
							| 50 |  | prmz |  |-  ( P e. Prime -> P e. ZZ ) | 
						
							| 51 | 12 50 | syl |  |-  ( ph -> P e. ZZ ) | 
						
							| 52 | 32 | nn0zd |  |-  ( ph -> ( # ` ( X /. .~ ) ) e. ZZ ) | 
						
							| 53 |  | ssrab2 |  |-  { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } C_ ( X /. .~ ) | 
						
							| 54 |  | ssfi |  |-  ( ( ( X /. .~ ) e. Fin /\ { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } C_ ( X /. .~ ) ) -> { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } e. Fin ) | 
						
							| 55 | 30 53 54 | sylancl |  |-  ( ph -> { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } e. Fin ) | 
						
							| 56 |  | hashcl |  |-  ( { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } e. Fin -> ( # ` { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } ) e. NN0 ) | 
						
							| 57 | 55 56 | syl |  |-  ( ph -> ( # ` { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } ) e. NN0 ) | 
						
							| 58 | 57 | nn0zd |  |-  ( ph -> ( # ` { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } ) e. ZZ ) | 
						
							| 59 |  | eqid |  |-  ( Base ` ( G |`s H ) ) = ( Base ` ( G |`s H ) ) | 
						
							| 60 | 1 2 3 4 5 6 7 | sylow2blem2 |  |-  ( ph -> .x. e. ( ( G |`s H ) GrpAct ( X /. .~ ) ) ) | 
						
							| 61 |  | eqid |  |-  ( G |`s H ) = ( G |`s H ) | 
						
							| 62 | 61 | subgbas |  |-  ( H e. ( SubGrp ` G ) -> H = ( Base ` ( G |`s H ) ) ) | 
						
							| 63 | 3 62 | syl |  |-  ( ph -> H = ( Base ` ( G |`s H ) ) ) | 
						
							| 64 | 1 | subgss |  |-  ( H e. ( SubGrp ` G ) -> H C_ X ) | 
						
							| 65 | 3 64 | syl |  |-  ( ph -> H C_ X ) | 
						
							| 66 | 2 65 | ssfid |  |-  ( ph -> H e. Fin ) | 
						
							| 67 | 63 66 | eqeltrrd |  |-  ( ph -> ( Base ` ( G |`s H ) ) e. Fin ) | 
						
							| 68 |  | eqid |  |-  { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } = { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } | 
						
							| 69 |  | eqid |  |-  { <. x , y >. | ( { x , y } C_ ( X /. .~ ) /\ E. g e. ( Base ` ( G |`s H ) ) ( g .x. x ) = y ) } = { <. x , y >. | ( { x , y } C_ ( X /. .~ ) /\ E. g e. ( Base ` ( G |`s H ) ) ( g .x. x ) = y ) } | 
						
							| 70 | 59 60 8 67 30 68 69 | sylow2a |  |-  ( ph -> P || ( ( # ` ( X /. .~ ) ) - ( # ` { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } ) ) ) | 
						
							| 71 |  | dvdssub2 |  |-  ( ( ( P e. ZZ /\ ( # ` ( X /. .~ ) ) e. ZZ /\ ( # ` { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } ) e. ZZ ) /\ P || ( ( # ` ( X /. .~ ) ) - ( # ` { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } ) ) ) -> ( P || ( # ` ( X /. .~ ) ) <-> P || ( # ` { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } ) ) ) | 
						
							| 72 | 51 52 58 70 71 | syl31anc |  |-  ( ph -> ( P || ( # ` ( X /. .~ ) ) <-> P || ( # ` { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } ) ) ) | 
						
							| 73 | 49 72 | mtbid |  |-  ( ph -> -. P || ( # ` { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } ) ) | 
						
							| 74 |  | hasheq0 |  |-  ( { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } e. Fin -> ( ( # ` { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } ) = 0 <-> { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } = (/) ) ) | 
						
							| 75 | 55 74 | syl |  |-  ( ph -> ( ( # ` { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } ) = 0 <-> { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } = (/) ) ) | 
						
							| 76 |  | dvds0 |  |-  ( P e. ZZ -> P || 0 ) | 
						
							| 77 | 51 76 | syl |  |-  ( ph -> P || 0 ) | 
						
							| 78 |  | breq2 |  |-  ( ( # ` { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } ) = 0 -> ( P || ( # ` { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } ) <-> P || 0 ) ) | 
						
							| 79 | 77 78 | syl5ibrcom |  |-  ( ph -> ( ( # ` { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } ) = 0 -> P || ( # ` { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } ) ) ) | 
						
							| 80 | 75 79 | sylbird |  |-  ( ph -> ( { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } = (/) -> P || ( # ` { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } ) ) ) | 
						
							| 81 | 80 | necon3bd |  |-  ( ph -> ( -. P || ( # ` { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } ) -> { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } =/= (/) ) ) | 
						
							| 82 | 73 81 | mpd |  |-  ( ph -> { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } =/= (/) ) | 
						
							| 83 |  | rabn0 |  |-  ( { z e. ( X /. .~ ) | A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z } =/= (/) <-> E. z e. ( X /. .~ ) A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z ) | 
						
							| 84 | 82 83 | sylib |  |-  ( ph -> E. z e. ( X /. .~ ) A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z ) | 
						
							| 85 | 63 | raleqdv |  |-  ( ph -> ( A. u e. H ( u .x. z ) = z <-> A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z ) ) | 
						
							| 86 | 85 | rexbidv |  |-  ( ph -> ( E. z e. ( X /. .~ ) A. u e. H ( u .x. z ) = z <-> E. z e. ( X /. .~ ) A. u e. ( Base ` ( G |`s H ) ) ( u .x. z ) = z ) ) | 
						
							| 87 | 84 86 | mpbird |  |-  ( ph -> E. z e. ( X /. .~ ) A. u e. H ( u .x. z ) = z ) | 
						
							| 88 |  | vex |  |-  z e. _V | 
						
							| 89 | 88 | elqs |  |-  ( z e. ( X /. .~ ) <-> E. g e. X z = [ g ] .~ ) | 
						
							| 90 |  | simplrr |  |-  ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> z = [ g ] .~ ) | 
						
							| 91 | 90 | oveq2d |  |-  ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ( u .x. z ) = ( u .x. [ g ] .~ ) ) | 
						
							| 92 |  | simprr |  |-  ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ( u .x. z ) = z ) | 
						
							| 93 |  | simpll |  |-  ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ph ) | 
						
							| 94 |  | simprl |  |-  ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> u e. H ) | 
						
							| 95 |  | simplrl |  |-  ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> g e. X ) | 
						
							| 96 | 1 2 3 4 5 6 7 | sylow2blem1 |  |-  ( ( ph /\ u e. H /\ g e. X ) -> ( u .x. [ g ] .~ ) = [ ( u .+ g ) ] .~ ) | 
						
							| 97 | 93 94 95 96 | syl3anc |  |-  ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ( u .x. [ g ] .~ ) = [ ( u .+ g ) ] .~ ) | 
						
							| 98 | 91 92 97 | 3eqtr3d |  |-  ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> z = [ ( u .+ g ) ] .~ ) | 
						
							| 99 | 90 98 | eqtr3d |  |-  ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> [ g ] .~ = [ ( u .+ g ) ] .~ ) | 
						
							| 100 | 28 | ad2antrr |  |-  ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> .~ Er X ) | 
						
							| 101 | 100 95 | erth |  |-  ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ( g .~ ( u .+ g ) <-> [ g ] .~ = [ ( u .+ g ) ] .~ ) ) | 
						
							| 102 | 99 101 | mpbird |  |-  ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> g .~ ( u .+ g ) ) | 
						
							| 103 | 14 | ad2antrr |  |-  ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> G e. Grp ) | 
						
							| 104 | 39 | ad2antrr |  |-  ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> K C_ X ) | 
						
							| 105 |  | eqid |  |-  ( invg ` G ) = ( invg ` G ) | 
						
							| 106 | 1 105 5 6 | eqgval |  |-  ( ( G e. Grp /\ K C_ X ) -> ( g .~ ( u .+ g ) <-> ( g e. X /\ ( u .+ g ) e. X /\ ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) e. K ) ) ) | 
						
							| 107 | 103 104 106 | syl2anc |  |-  ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ( g .~ ( u .+ g ) <-> ( g e. X /\ ( u .+ g ) e. X /\ ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) e. K ) ) ) | 
						
							| 108 | 102 107 | mpbid |  |-  ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ( g e. X /\ ( u .+ g ) e. X /\ ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) e. K ) ) | 
						
							| 109 | 108 | simp3d |  |-  ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) e. K ) | 
						
							| 110 |  | oveq2 |  |-  ( x = ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) -> ( g .+ x ) = ( g .+ ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) ) ) | 
						
							| 111 | 110 | oveq1d |  |-  ( x = ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) -> ( ( g .+ x ) .- g ) = ( ( g .+ ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) ) .- g ) ) | 
						
							| 112 |  | eqid |  |-  ( x e. K |-> ( ( g .+ x ) .- g ) ) = ( x e. K |-> ( ( g .+ x ) .- g ) ) | 
						
							| 113 |  | ovex |  |-  ( ( g .+ ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) ) .- g ) e. _V | 
						
							| 114 | 111 112 113 | fvmpt |  |-  ( ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) e. K -> ( ( x e. K |-> ( ( g .+ x ) .- g ) ) ` ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) ) = ( ( g .+ ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) ) .- g ) ) | 
						
							| 115 | 109 114 | syl |  |-  ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ( ( x e. K |-> ( ( g .+ x ) .- g ) ) ` ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) ) = ( ( g .+ ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) ) .- g ) ) | 
						
							| 116 | 1 5 34 105 | grprinv |  |-  ( ( G e. Grp /\ g e. X ) -> ( g .+ ( ( invg ` G ) ` g ) ) = ( 0g ` G ) ) | 
						
							| 117 | 103 95 116 | syl2anc |  |-  ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ( g .+ ( ( invg ` G ) ` g ) ) = ( 0g ` G ) ) | 
						
							| 118 | 117 | oveq1d |  |-  ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ( ( g .+ ( ( invg ` G ) ` g ) ) .+ ( u .+ g ) ) = ( ( 0g ` G ) .+ ( u .+ g ) ) ) | 
						
							| 119 | 1 105 | grpinvcl |  |-  ( ( G e. Grp /\ g e. X ) -> ( ( invg ` G ) ` g ) e. X ) | 
						
							| 120 | 103 95 119 | syl2anc |  |-  ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ( ( invg ` G ) ` g ) e. X ) | 
						
							| 121 | 65 | ad2antrr |  |-  ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> H C_ X ) | 
						
							| 122 | 121 94 | sseldd |  |-  ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> u e. X ) | 
						
							| 123 | 1 5 | grpcl |  |-  ( ( G e. Grp /\ u e. X /\ g e. X ) -> ( u .+ g ) e. X ) | 
						
							| 124 | 103 122 95 123 | syl3anc |  |-  ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ( u .+ g ) e. X ) | 
						
							| 125 | 1 5 | grpass |  |-  ( ( G e. Grp /\ ( g e. X /\ ( ( invg ` G ) ` g ) e. X /\ ( u .+ g ) e. X ) ) -> ( ( g .+ ( ( invg ` G ) ` g ) ) .+ ( u .+ g ) ) = ( g .+ ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) ) ) | 
						
							| 126 | 103 95 120 124 125 | syl13anc |  |-  ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ( ( g .+ ( ( invg ` G ) ` g ) ) .+ ( u .+ g ) ) = ( g .+ ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) ) ) | 
						
							| 127 | 1 5 34 | grplid |  |-  ( ( G e. Grp /\ ( u .+ g ) e. X ) -> ( ( 0g ` G ) .+ ( u .+ g ) ) = ( u .+ g ) ) | 
						
							| 128 | 103 124 127 | syl2anc |  |-  ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ( ( 0g ` G ) .+ ( u .+ g ) ) = ( u .+ g ) ) | 
						
							| 129 | 118 126 128 | 3eqtr3d |  |-  ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ( g .+ ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) ) = ( u .+ g ) ) | 
						
							| 130 | 129 | oveq1d |  |-  ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ( ( g .+ ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) ) .- g ) = ( ( u .+ g ) .- g ) ) | 
						
							| 131 | 1 5 10 | grppncan |  |-  ( ( G e. Grp /\ u e. X /\ g e. X ) -> ( ( u .+ g ) .- g ) = u ) | 
						
							| 132 | 103 122 95 131 | syl3anc |  |-  ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ( ( u .+ g ) .- g ) = u ) | 
						
							| 133 | 115 130 132 | 3eqtrd |  |-  ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ( ( x e. K |-> ( ( g .+ x ) .- g ) ) ` ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) ) = u ) | 
						
							| 134 |  | ovex |  |-  ( ( g .+ x ) .- g ) e. _V | 
						
							| 135 | 134 112 | fnmpti |  |-  ( x e. K |-> ( ( g .+ x ) .- g ) ) Fn K | 
						
							| 136 |  | fnfvelrn |  |-  ( ( ( x e. K |-> ( ( g .+ x ) .- g ) ) Fn K /\ ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) e. K ) -> ( ( x e. K |-> ( ( g .+ x ) .- g ) ) ` ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) ) e. ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) | 
						
							| 137 | 135 109 136 | sylancr |  |-  ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> ( ( x e. K |-> ( ( g .+ x ) .- g ) ) ` ( ( ( invg ` G ) ` g ) .+ ( u .+ g ) ) ) e. ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) | 
						
							| 138 | 133 137 | eqeltrrd |  |-  ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ ( u e. H /\ ( u .x. z ) = z ) ) -> u e. ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) | 
						
							| 139 | 138 | expr |  |-  ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ u e. H ) -> ( ( u .x. z ) = z -> u e. ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) ) | 
						
							| 140 | 139 | ralimdva |  |-  ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) -> ( A. u e. H ( u .x. z ) = z -> A. u e. H u e. ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) ) | 
						
							| 141 | 140 | imp |  |-  ( ( ( ph /\ ( g e. X /\ z = [ g ] .~ ) ) /\ A. u e. H ( u .x. z ) = z ) -> A. u e. H u e. ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) | 
						
							| 142 | 141 | an32s |  |-  ( ( ( ph /\ A. u e. H ( u .x. z ) = z ) /\ ( g e. X /\ z = [ g ] .~ ) ) -> A. u e. H u e. ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) | 
						
							| 143 |  | dfss3 |  |-  ( H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) <-> A. u e. H u e. ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) | 
						
							| 144 | 142 143 | sylibr |  |-  ( ( ( ph /\ A. u e. H ( u .x. z ) = z ) /\ ( g e. X /\ z = [ g ] .~ ) ) -> H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) | 
						
							| 145 | 144 | expr |  |-  ( ( ( ph /\ A. u e. H ( u .x. z ) = z ) /\ g e. X ) -> ( z = [ g ] .~ -> H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) ) | 
						
							| 146 | 145 | reximdva |  |-  ( ( ph /\ A. u e. H ( u .x. z ) = z ) -> ( E. g e. X z = [ g ] .~ -> E. g e. X H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) ) | 
						
							| 147 | 146 | ex |  |-  ( ph -> ( A. u e. H ( u .x. z ) = z -> ( E. g e. X z = [ g ] .~ -> E. g e. X H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) ) ) | 
						
							| 148 | 147 | com23 |  |-  ( ph -> ( E. g e. X z = [ g ] .~ -> ( A. u e. H ( u .x. z ) = z -> E. g e. X H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) ) ) | 
						
							| 149 | 89 148 | biimtrid |  |-  ( ph -> ( z e. ( X /. .~ ) -> ( A. u e. H ( u .x. z ) = z -> E. g e. X H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) ) ) | 
						
							| 150 | 149 | rexlimdv |  |-  ( ph -> ( E. z e. ( X /. .~ ) A. u e. H ( u .x. z ) = z -> E. g e. X H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) ) | 
						
							| 151 | 87 150 | mpd |  |-  ( ph -> E. g e. X H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) |