| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sylow2b.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | sylow2b.xf |  |-  ( ph -> X e. Fin ) | 
						
							| 3 |  | sylow2b.h |  |-  ( ph -> H e. ( SubGrp ` G ) ) | 
						
							| 4 |  | sylow2b.k |  |-  ( ph -> K e. ( SubGrp ` G ) ) | 
						
							| 5 |  | sylow2b.a |  |-  .+ = ( +g ` G ) | 
						
							| 6 |  | sylow2b.hp |  |-  ( ph -> P pGrp ( G |`s H ) ) | 
						
							| 7 |  | sylow2b.kn |  |-  ( ph -> ( # ` K ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) | 
						
							| 8 |  | sylow2b.d |  |-  .- = ( -g ` G ) | 
						
							| 9 |  | eqid |  |-  ( G ~QG K ) = ( G ~QG K ) | 
						
							| 10 |  | oveq2 |  |-  ( s = z -> ( u .+ s ) = ( u .+ z ) ) | 
						
							| 11 | 10 | cbvmptv |  |-  ( s e. v |-> ( u .+ s ) ) = ( z e. v |-> ( u .+ z ) ) | 
						
							| 12 |  | oveq1 |  |-  ( u = x -> ( u .+ z ) = ( x .+ z ) ) | 
						
							| 13 | 12 | mpteq2dv |  |-  ( u = x -> ( z e. v |-> ( u .+ z ) ) = ( z e. v |-> ( x .+ z ) ) ) | 
						
							| 14 | 11 13 | eqtrid |  |-  ( u = x -> ( s e. v |-> ( u .+ s ) ) = ( z e. v |-> ( x .+ z ) ) ) | 
						
							| 15 | 14 | rneqd |  |-  ( u = x -> ran ( s e. v |-> ( u .+ s ) ) = ran ( z e. v |-> ( x .+ z ) ) ) | 
						
							| 16 |  | mpteq1 |  |-  ( v = y -> ( z e. v |-> ( x .+ z ) ) = ( z e. y |-> ( x .+ z ) ) ) | 
						
							| 17 | 16 | rneqd |  |-  ( v = y -> ran ( z e. v |-> ( x .+ z ) ) = ran ( z e. y |-> ( x .+ z ) ) ) | 
						
							| 18 | 15 17 | cbvmpov |  |-  ( u e. H , v e. ( X /. ( G ~QG K ) ) |-> ran ( s e. v |-> ( u .+ s ) ) ) = ( x e. H , y e. ( X /. ( G ~QG K ) ) |-> ran ( z e. y |-> ( x .+ z ) ) ) | 
						
							| 19 | 1 2 3 4 5 9 18 6 7 8 | sylow2blem3 |  |-  ( ph -> E. g e. X H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) |