| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sylow2b.x |
|- X = ( Base ` G ) |
| 2 |
|
sylow2b.xf |
|- ( ph -> X e. Fin ) |
| 3 |
|
sylow2b.h |
|- ( ph -> H e. ( SubGrp ` G ) ) |
| 4 |
|
sylow2b.k |
|- ( ph -> K e. ( SubGrp ` G ) ) |
| 5 |
|
sylow2b.a |
|- .+ = ( +g ` G ) |
| 6 |
|
sylow2b.hp |
|- ( ph -> P pGrp ( G |`s H ) ) |
| 7 |
|
sylow2b.kn |
|- ( ph -> ( # ` K ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) |
| 8 |
|
sylow2b.d |
|- .- = ( -g ` G ) |
| 9 |
|
eqid |
|- ( G ~QG K ) = ( G ~QG K ) |
| 10 |
|
oveq2 |
|- ( s = z -> ( u .+ s ) = ( u .+ z ) ) |
| 11 |
10
|
cbvmptv |
|- ( s e. v |-> ( u .+ s ) ) = ( z e. v |-> ( u .+ z ) ) |
| 12 |
|
oveq1 |
|- ( u = x -> ( u .+ z ) = ( x .+ z ) ) |
| 13 |
12
|
mpteq2dv |
|- ( u = x -> ( z e. v |-> ( u .+ z ) ) = ( z e. v |-> ( x .+ z ) ) ) |
| 14 |
11 13
|
eqtrid |
|- ( u = x -> ( s e. v |-> ( u .+ s ) ) = ( z e. v |-> ( x .+ z ) ) ) |
| 15 |
14
|
rneqd |
|- ( u = x -> ran ( s e. v |-> ( u .+ s ) ) = ran ( z e. v |-> ( x .+ z ) ) ) |
| 16 |
|
mpteq1 |
|- ( v = y -> ( z e. v |-> ( x .+ z ) ) = ( z e. y |-> ( x .+ z ) ) ) |
| 17 |
16
|
rneqd |
|- ( v = y -> ran ( z e. v |-> ( x .+ z ) ) = ran ( z e. y |-> ( x .+ z ) ) ) |
| 18 |
15 17
|
cbvmpov |
|- ( u e. H , v e. ( X /. ( G ~QG K ) ) |-> ran ( s e. v |-> ( u .+ s ) ) ) = ( x e. H , y e. ( X /. ( G ~QG K ) ) |-> ran ( z e. y |-> ( x .+ z ) ) ) |
| 19 |
1 2 3 4 5 9 18 6 7 8
|
sylow2blem3 |
|- ( ph -> E. g e. X H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) |