| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sylow2b.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | sylow2b.xf | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 3 |  | sylow2b.h | ⊢ ( 𝜑  →  𝐻  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 4 |  | sylow2b.k | ⊢ ( 𝜑  →  𝐾  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 5 |  | sylow2b.a | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 6 |  | sylow2b.hp | ⊢ ( 𝜑  →  𝑃  pGrp  ( 𝐺  ↾s  𝐻 ) ) | 
						
							| 7 |  | sylow2b.kn | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐾 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) | 
						
							| 8 |  | sylow2b.d | ⊢  −   =  ( -g ‘ 𝐺 ) | 
						
							| 9 |  | eqid | ⊢ ( 𝐺  ~QG  𝐾 )  =  ( 𝐺  ~QG  𝐾 ) | 
						
							| 10 |  | oveq2 | ⊢ ( 𝑠  =  𝑧  →  ( 𝑢  +  𝑠 )  =  ( 𝑢  +  𝑧 ) ) | 
						
							| 11 | 10 | cbvmptv | ⊢ ( 𝑠  ∈  𝑣  ↦  ( 𝑢  +  𝑠 ) )  =  ( 𝑧  ∈  𝑣  ↦  ( 𝑢  +  𝑧 ) ) | 
						
							| 12 |  | oveq1 | ⊢ ( 𝑢  =  𝑥  →  ( 𝑢  +  𝑧 )  =  ( 𝑥  +  𝑧 ) ) | 
						
							| 13 | 12 | mpteq2dv | ⊢ ( 𝑢  =  𝑥  →  ( 𝑧  ∈  𝑣  ↦  ( 𝑢  +  𝑧 ) )  =  ( 𝑧  ∈  𝑣  ↦  ( 𝑥  +  𝑧 ) ) ) | 
						
							| 14 | 11 13 | eqtrid | ⊢ ( 𝑢  =  𝑥  →  ( 𝑠  ∈  𝑣  ↦  ( 𝑢  +  𝑠 ) )  =  ( 𝑧  ∈  𝑣  ↦  ( 𝑥  +  𝑧 ) ) ) | 
						
							| 15 | 14 | rneqd | ⊢ ( 𝑢  =  𝑥  →  ran  ( 𝑠  ∈  𝑣  ↦  ( 𝑢  +  𝑠 ) )  =  ran  ( 𝑧  ∈  𝑣  ↦  ( 𝑥  +  𝑧 ) ) ) | 
						
							| 16 |  | mpteq1 | ⊢ ( 𝑣  =  𝑦  →  ( 𝑧  ∈  𝑣  ↦  ( 𝑥  +  𝑧 ) )  =  ( 𝑧  ∈  𝑦  ↦  ( 𝑥  +  𝑧 ) ) ) | 
						
							| 17 | 16 | rneqd | ⊢ ( 𝑣  =  𝑦  →  ran  ( 𝑧  ∈  𝑣  ↦  ( 𝑥  +  𝑧 ) )  =  ran  ( 𝑧  ∈  𝑦  ↦  ( 𝑥  +  𝑧 ) ) ) | 
						
							| 18 | 15 17 | cbvmpov | ⊢ ( 𝑢  ∈  𝐻 ,  𝑣  ∈  ( 𝑋  /  ( 𝐺  ~QG  𝐾 ) )  ↦  ran  ( 𝑠  ∈  𝑣  ↦  ( 𝑢  +  𝑠 ) ) )  =  ( 𝑥  ∈  𝐻 ,  𝑦  ∈  ( 𝑋  /  ( 𝐺  ~QG  𝐾 ) )  ↦  ran  ( 𝑧  ∈  𝑦  ↦  ( 𝑥  +  𝑧 ) ) ) | 
						
							| 19 | 1 2 3 4 5 9 18 6 7 8 | sylow2blem3 | ⊢ ( 𝜑  →  ∃ 𝑔  ∈  𝑋 𝐻  ⊆  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ) |