Metamath Proof Explorer


Theorem sylow2b

Description: Sylow's second theorem. Any P -group H is a subgroup of a conjugated P -group K of order P ^ n || ( #X ) with n maximal. This is usually stated under the assumption that K is a Sylow subgroup, but we use a slightly different definition, whose equivalence to this one requires this theorem. This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 18-Jan-2015)

Ref Expression
Hypotheses sylow2b.x X=BaseG
sylow2b.xf φXFin
sylow2b.h φHSubGrpG
sylow2b.k φKSubGrpG
sylow2b.a +˙=+G
sylow2b.hp φPpGrpG𝑠H
sylow2b.kn φK=PPpCntX
sylow2b.d -˙=-G
Assertion sylow2b φgXHranxKg+˙x-˙g

Proof

Step Hyp Ref Expression
1 sylow2b.x X=BaseG
2 sylow2b.xf φXFin
3 sylow2b.h φHSubGrpG
4 sylow2b.k φKSubGrpG
5 sylow2b.a +˙=+G
6 sylow2b.hp φPpGrpG𝑠H
7 sylow2b.kn φK=PPpCntX
8 sylow2b.d -˙=-G
9 eqid G~QGK=G~QGK
10 oveq2 s=zu+˙s=u+˙z
11 10 cbvmptv svu+˙s=zvu+˙z
12 oveq1 u=xu+˙z=x+˙z
13 12 mpteq2dv u=xzvu+˙z=zvx+˙z
14 11 13 eqtrid u=xsvu+˙s=zvx+˙z
15 14 rneqd u=xransvu+˙s=ranzvx+˙z
16 mpteq1 v=yzvx+˙z=zyx+˙z
17 16 rneqd v=yranzvx+˙z=ranzyx+˙z
18 15 17 cbvmpov uH,vX/G~QGKransvu+˙s=xH,yX/G~QGKranzyx+˙z
19 1 2 3 4 5 9 18 6 7 8 sylow2blem3 φgXHranxKg+˙x-˙g