Metamath Proof Explorer


Theorem slwhash

Description: A sylow subgroup has cardinality equal to the maximum power of P dividing the group. (Contributed by Mario Carneiro, 18-Jan-2015)

Ref Expression
Hypotheses fislw.1 X=BaseG
slwhash.3 φXFin
slwhash.4 φHPpSylG
Assertion slwhash φH=PPpCntX

Proof

Step Hyp Ref Expression
1 fislw.1 X=BaseG
2 slwhash.3 φXFin
3 slwhash.4 φHPpSylG
4 slwsubg HPpSylGHSubGrpG
5 3 4 syl φHSubGrpG
6 subgrcl HSubGrpGGGrp
7 5 6 syl φGGrp
8 slwprm HPpSylGP
9 3 8 syl φP
10 1 grpbn0 GGrpX
11 7 10 syl φX
12 hashnncl XFinXX
13 2 12 syl φXX
14 11 13 mpbird φX
15 9 14 pccld φPpCntX0
16 pcdvds PXPPpCntXX
17 9 14 16 syl2anc φPPpCntXX
18 1 7 2 9 15 17 sylow1 φkSubGrpGk=PPpCntX
19 2 adantr φkSubGrpGk=PPpCntXXFin
20 5 adantr φkSubGrpGk=PPpCntXHSubGrpG
21 simprl φkSubGrpGk=PPpCntXkSubGrpG
22 eqid +G=+G
23 eqid G𝑠H=G𝑠H
24 23 slwpgp HPpSylGPpGrpG𝑠H
25 3 24 syl φPpGrpG𝑠H
26 25 adantr φkSubGrpGk=PPpCntXPpGrpG𝑠H
27 simprr φkSubGrpGk=PPpCntXk=PPpCntX
28 eqid -G=-G
29 1 19 20 21 22 26 27 28 sylow2b φkSubGrpGk=PPpCntXgXHranxkg+Gx-Gg
30 simprr φkSubGrpGk=PPpCntXgXHranxkg+Gx-GgHranxkg+Gx-Gg
31 3 ad2antrr φkSubGrpGk=PPpCntXgXHranxkg+Gx-GgHPpSylG
32 31 8 syl φkSubGrpGk=PPpCntXgXHranxkg+Gx-GgP
33 15 ad2antrr φkSubGrpGk=PPpCntXgXHranxkg+Gx-GgPpCntX0
34 21 adantr φkSubGrpGk=PPpCntXgXHranxkg+Gx-GgkSubGrpG
35 simprl φkSubGrpGk=PPpCntXgXHranxkg+Gx-GggX
36 eqid xkg+Gx-Gg=xkg+Gx-Gg
37 1 22 28 36 conjsubg kSubGrpGgXranxkg+Gx-GgSubGrpG
38 34 35 37 syl2anc φkSubGrpGk=PPpCntXgXHranxkg+Gx-Ggranxkg+Gx-GgSubGrpG
39 eqid G𝑠ranxkg+Gx-Gg=G𝑠ranxkg+Gx-Gg
40 39 subgbas ranxkg+Gx-GgSubGrpGranxkg+Gx-Gg=BaseG𝑠ranxkg+Gx-Gg
41 38 40 syl φkSubGrpGk=PPpCntXgXHranxkg+Gx-Ggranxkg+Gx-Gg=BaseG𝑠ranxkg+Gx-Gg
42 41 fveq2d φkSubGrpGk=PPpCntXgXHranxkg+Gx-Ggranxkg+Gx-Gg=BaseG𝑠ranxkg+Gx-Gg
43 1 22 28 36 conjsubgen kSubGrpGgXkranxkg+Gx-Gg
44 34 35 43 syl2anc φkSubGrpGk=PPpCntXgXHranxkg+Gx-Ggkranxkg+Gx-Gg
45 2 ad2antrr φkSubGrpGk=PPpCntXgXHranxkg+Gx-GgXFin
46 1 subgss kSubGrpGkX
47 34 46 syl φkSubGrpGk=PPpCntXgXHranxkg+Gx-GgkX
48 45 47 ssfid φkSubGrpGk=PPpCntXgXHranxkg+Gx-GgkFin
49 1 subgss ranxkg+Gx-GgSubGrpGranxkg+Gx-GgX
50 38 49 syl φkSubGrpGk=PPpCntXgXHranxkg+Gx-Ggranxkg+Gx-GgX
51 45 50 ssfid φkSubGrpGk=PPpCntXgXHranxkg+Gx-Ggranxkg+Gx-GgFin
52 hashen kFinranxkg+Gx-GgFink=ranxkg+Gx-Ggkranxkg+Gx-Gg
53 48 51 52 syl2anc φkSubGrpGk=PPpCntXgXHranxkg+Gx-Ggk=ranxkg+Gx-Ggkranxkg+Gx-Gg
54 44 53 mpbird φkSubGrpGk=PPpCntXgXHranxkg+Gx-Ggk=ranxkg+Gx-Gg
55 simplrr φkSubGrpGk=PPpCntXgXHranxkg+Gx-Ggk=PPpCntX
56 54 55 eqtr3d φkSubGrpGk=PPpCntXgXHranxkg+Gx-Ggranxkg+Gx-Gg=PPpCntX
57 42 56 eqtr3d φkSubGrpGk=PPpCntXgXHranxkg+Gx-GgBaseG𝑠ranxkg+Gx-Gg=PPpCntX
58 oveq2 n=PpCntXPn=PPpCntX
59 58 rspceeqv PpCntX0BaseG𝑠ranxkg+Gx-Gg=PPpCntXn0BaseG𝑠ranxkg+Gx-Gg=Pn
60 33 57 59 syl2anc φkSubGrpGk=PPpCntXgXHranxkg+Gx-Ggn0BaseG𝑠ranxkg+Gx-Gg=Pn
61 39 subggrp ranxkg+Gx-GgSubGrpGG𝑠ranxkg+Gx-GgGrp
62 38 61 syl φkSubGrpGk=PPpCntXgXHranxkg+Gx-GgG𝑠ranxkg+Gx-GgGrp
63 41 51 eqeltrrd φkSubGrpGk=PPpCntXgXHranxkg+Gx-GgBaseG𝑠ranxkg+Gx-GgFin
64 eqid BaseG𝑠ranxkg+Gx-Gg=BaseG𝑠ranxkg+Gx-Gg
65 64 pgpfi G𝑠ranxkg+Gx-GgGrpBaseG𝑠ranxkg+Gx-GgFinPpGrpG𝑠ranxkg+Gx-GgPn0BaseG𝑠ranxkg+Gx-Gg=Pn
66 62 63 65 syl2anc φkSubGrpGk=PPpCntXgXHranxkg+Gx-GgPpGrpG𝑠ranxkg+Gx-GgPn0BaseG𝑠ranxkg+Gx-Gg=Pn
67 32 60 66 mpbir2and φkSubGrpGk=PPpCntXgXHranxkg+Gx-GgPpGrpG𝑠ranxkg+Gx-Gg
68 39 slwispgp HPpSylGranxkg+Gx-GgSubGrpGHranxkg+Gx-GgPpGrpG𝑠ranxkg+Gx-GgH=ranxkg+Gx-Gg
69 31 38 68 syl2anc φkSubGrpGk=PPpCntXgXHranxkg+Gx-GgHranxkg+Gx-GgPpGrpG𝑠ranxkg+Gx-GgH=ranxkg+Gx-Gg
70 30 67 69 mpbi2and φkSubGrpGk=PPpCntXgXHranxkg+Gx-GgH=ranxkg+Gx-Gg
71 70 fveq2d φkSubGrpGk=PPpCntXgXHranxkg+Gx-GgH=ranxkg+Gx-Gg
72 71 56 eqtrd φkSubGrpGk=PPpCntXgXHranxkg+Gx-GgH=PPpCntX
73 29 72 rexlimddv φkSubGrpGk=PPpCntXH=PPpCntX
74 18 73 rexlimddv φH=PPpCntX