Metamath Proof Explorer


Theorem sylow1

Description: Sylow's first theorem. If P ^ N is a prime power that divides the cardinality of G , then G has a supgroup with size P ^ N . This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 16-Jan-2015)

Ref Expression
Hypotheses sylow1.x X = Base G
sylow1.g φ G Grp
sylow1.f φ X Fin
sylow1.p φ P
sylow1.n φ N 0
sylow1.d φ P N X
Assertion sylow1 φ g SubGrp G g = P N

Proof

Step Hyp Ref Expression
1 sylow1.x X = Base G
2 sylow1.g φ G Grp
3 sylow1.f φ X Fin
4 sylow1.p φ P
5 sylow1.n φ N 0
6 sylow1.d φ P N X
7 eqid + G = + G
8 eqid s 𝒫 X | s = P N = s 𝒫 X | s = P N
9 oveq2 s = z u + G s = u + G z
10 9 cbvmptv s v u + G s = z v u + G z
11 oveq1 u = x u + G z = x + G z
12 11 mpteq2dv u = x z v u + G z = z v x + G z
13 10 12 syl5eq u = x s v u + G s = z v x + G z
14 13 rneqd u = x ran s v u + G s = ran z v x + G z
15 mpteq1 v = y z v x + G z = z y x + G z
16 15 rneqd v = y ran z v x + G z = ran z y x + G z
17 14 16 cbvmpov u X , v s 𝒫 X | s = P N ran s v u + G s = x X , y s 𝒫 X | s = P N ran z y x + G z
18 preq12 a = x b = y a b = x y
19 18 sseq1d a = x b = y a b s 𝒫 X | s = P N x y s 𝒫 X | s = P N
20 oveq2 a = x k u X , v s 𝒫 X | s = P N ran s v u + G s a = k u X , v s 𝒫 X | s = P N ran s v u + G s x
21 id b = y b = y
22 20 21 eqeqan12d a = x b = y k u X , v s 𝒫 X | s = P N ran s v u + G s a = b k u X , v s 𝒫 X | s = P N ran s v u + G s x = y
23 22 rexbidv a = x b = y k X k u X , v s 𝒫 X | s = P N ran s v u + G s a = b k X k u X , v s 𝒫 X | s = P N ran s v u + G s x = y
24 19 23 anbi12d a = x b = y a b s 𝒫 X | s = P N k X k u X , v s 𝒫 X | s = P N ran s v u + G s a = b x y s 𝒫 X | s = P N k X k u X , v s 𝒫 X | s = P N ran s v u + G s x = y
25 24 cbvopabv a b | a b s 𝒫 X | s = P N k X k u X , v s 𝒫 X | s = P N ran s v u + G s a = b = x y | x y s 𝒫 X | s = P N k X k u X , v s 𝒫 X | s = P N ran s v u + G s x = y
26 1 2 3 4 5 6 7 8 17 25 sylow1lem3 φ h s 𝒫 X | s = P N P pCnt h a b | a b s 𝒫 X | s = P N k X k u X , v s 𝒫 X | s = P N ran s v u + G s a = b P pCnt X N
27 2 adantr φ h s 𝒫 X | s = P N P pCnt h a b | a b s 𝒫 X | s = P N k X k u X , v s 𝒫 X | s = P N ran s v u + G s a = b P pCnt X N G Grp
28 3 adantr φ h s 𝒫 X | s = P N P pCnt h a b | a b s 𝒫 X | s = P N k X k u X , v s 𝒫 X | s = P N ran s v u + G s a = b P pCnt X N X Fin
29 4 adantr φ h s 𝒫 X | s = P N P pCnt h a b | a b s 𝒫 X | s = P N k X k u X , v s 𝒫 X | s = P N ran s v u + G s a = b P pCnt X N P
30 5 adantr φ h s 𝒫 X | s = P N P pCnt h a b | a b s 𝒫 X | s = P N k X k u X , v s 𝒫 X | s = P N ran s v u + G s a = b P pCnt X N N 0
31 6 adantr φ h s 𝒫 X | s = P N P pCnt h a b | a b s 𝒫 X | s = P N k X k u X , v s 𝒫 X | s = P N ran s v u + G s a = b P pCnt X N P N X
32 simprl φ h s 𝒫 X | s = P N P pCnt h a b | a b s 𝒫 X | s = P N k X k u X , v s 𝒫 X | s = P N ran s v u + G s a = b P pCnt X N h s 𝒫 X | s = P N
33 eqid t X | t u X , v s 𝒫 X | s = P N ran s v u + G s h = h = t X | t u X , v s 𝒫 X | s = P N ran s v u + G s h = h
34 simprr φ h s 𝒫 X | s = P N P pCnt h a b | a b s 𝒫 X | s = P N k X k u X , v s 𝒫 X | s = P N ran s v u + G s a = b P pCnt X N P pCnt h a b | a b s 𝒫 X | s = P N k X k u X , v s 𝒫 X | s = P N ran s v u + G s a = b P pCnt X N
35 1 27 28 29 30 31 7 8 17 25 32 33 34 sylow1lem5 φ h s 𝒫 X | s = P N P pCnt h a b | a b s 𝒫 X | s = P N k X k u X , v s 𝒫 X | s = P N ran s v u + G s a = b P pCnt X N g SubGrp G g = P N
36 26 35 rexlimddv φ g SubGrp G g = P N