Step |
Hyp |
Ref |
Expression |
1 |
|
sylow1.x |
|- X = ( Base ` G ) |
2 |
|
sylow1.g |
|- ( ph -> G e. Grp ) |
3 |
|
sylow1.f |
|- ( ph -> X e. Fin ) |
4 |
|
sylow1.p |
|- ( ph -> P e. Prime ) |
5 |
|
sylow1.n |
|- ( ph -> N e. NN0 ) |
6 |
|
sylow1.d |
|- ( ph -> ( P ^ N ) || ( # ` X ) ) |
7 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
8 |
|
eqid |
|- { s e. ~P X | ( # ` s ) = ( P ^ N ) } = { s e. ~P X | ( # ` s ) = ( P ^ N ) } |
9 |
|
oveq2 |
|- ( s = z -> ( u ( +g ` G ) s ) = ( u ( +g ` G ) z ) ) |
10 |
9
|
cbvmptv |
|- ( s e. v |-> ( u ( +g ` G ) s ) ) = ( z e. v |-> ( u ( +g ` G ) z ) ) |
11 |
|
oveq1 |
|- ( u = x -> ( u ( +g ` G ) z ) = ( x ( +g ` G ) z ) ) |
12 |
11
|
mpteq2dv |
|- ( u = x -> ( z e. v |-> ( u ( +g ` G ) z ) ) = ( z e. v |-> ( x ( +g ` G ) z ) ) ) |
13 |
10 12
|
eqtrid |
|- ( u = x -> ( s e. v |-> ( u ( +g ` G ) s ) ) = ( z e. v |-> ( x ( +g ` G ) z ) ) ) |
14 |
13
|
rneqd |
|- ( u = x -> ran ( s e. v |-> ( u ( +g ` G ) s ) ) = ran ( z e. v |-> ( x ( +g ` G ) z ) ) ) |
15 |
|
mpteq1 |
|- ( v = y -> ( z e. v |-> ( x ( +g ` G ) z ) ) = ( z e. y |-> ( x ( +g ` G ) z ) ) ) |
16 |
15
|
rneqd |
|- ( v = y -> ran ( z e. v |-> ( x ( +g ` G ) z ) ) = ran ( z e. y |-> ( x ( +g ` G ) z ) ) ) |
17 |
14 16
|
cbvmpov |
|- ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) = ( x e. X , y e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( z e. y |-> ( x ( +g ` G ) z ) ) ) |
18 |
|
preq12 |
|- ( ( a = x /\ b = y ) -> { a , b } = { x , y } ) |
19 |
18
|
sseq1d |
|- ( ( a = x /\ b = y ) -> ( { a , b } C_ { s e. ~P X | ( # ` s ) = ( P ^ N ) } <-> { x , y } C_ { s e. ~P X | ( # ` s ) = ( P ^ N ) } ) ) |
20 |
|
oveq2 |
|- ( a = x -> ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) a ) = ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) x ) ) |
21 |
|
id |
|- ( b = y -> b = y ) |
22 |
20 21
|
eqeqan12d |
|- ( ( a = x /\ b = y ) -> ( ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) a ) = b <-> ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) x ) = y ) ) |
23 |
22
|
rexbidv |
|- ( ( a = x /\ b = y ) -> ( E. k e. X ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) a ) = b <-> E. k e. X ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) x ) = y ) ) |
24 |
19 23
|
anbi12d |
|- ( ( a = x /\ b = y ) -> ( ( { a , b } C_ { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ E. k e. X ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) a ) = b ) <-> ( { x , y } C_ { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ E. k e. X ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) x ) = y ) ) ) |
25 |
24
|
cbvopabv |
|- { <. a , b >. | ( { a , b } C_ { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ E. k e. X ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) a ) = b ) } = { <. x , y >. | ( { x , y } C_ { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ E. k e. X ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) x ) = y ) } |
26 |
1 2 3 4 5 6 7 8 17 25
|
sylow1lem3 |
|- ( ph -> E. h e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } ( P pCnt ( # ` [ h ] { <. a , b >. | ( { a , b } C_ { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ E. k e. X ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) a ) = b ) } ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) |
27 |
2
|
adantr |
|- ( ( ph /\ ( h e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ ( P pCnt ( # ` [ h ] { <. a , b >. | ( { a , b } C_ { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ E. k e. X ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) a ) = b ) } ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) -> G e. Grp ) |
28 |
3
|
adantr |
|- ( ( ph /\ ( h e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ ( P pCnt ( # ` [ h ] { <. a , b >. | ( { a , b } C_ { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ E. k e. X ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) a ) = b ) } ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) -> X e. Fin ) |
29 |
4
|
adantr |
|- ( ( ph /\ ( h e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ ( P pCnt ( # ` [ h ] { <. a , b >. | ( { a , b } C_ { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ E. k e. X ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) a ) = b ) } ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) -> P e. Prime ) |
30 |
5
|
adantr |
|- ( ( ph /\ ( h e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ ( P pCnt ( # ` [ h ] { <. a , b >. | ( { a , b } C_ { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ E. k e. X ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) a ) = b ) } ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) -> N e. NN0 ) |
31 |
6
|
adantr |
|- ( ( ph /\ ( h e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ ( P pCnt ( # ` [ h ] { <. a , b >. | ( { a , b } C_ { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ E. k e. X ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) a ) = b ) } ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) -> ( P ^ N ) || ( # ` X ) ) |
32 |
|
simprl |
|- ( ( ph /\ ( h e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ ( P pCnt ( # ` [ h ] { <. a , b >. | ( { a , b } C_ { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ E. k e. X ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) a ) = b ) } ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) -> h e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } ) |
33 |
|
eqid |
|- { t e. X | ( t ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) h ) = h } = { t e. X | ( t ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) h ) = h } |
34 |
|
simprr |
|- ( ( ph /\ ( h e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ ( P pCnt ( # ` [ h ] { <. a , b >. | ( { a , b } C_ { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ E. k e. X ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) a ) = b ) } ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) -> ( P pCnt ( # ` [ h ] { <. a , b >. | ( { a , b } C_ { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ E. k e. X ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) a ) = b ) } ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) |
35 |
1 27 28 29 30 31 7 8 17 25 32 33 34
|
sylow1lem5 |
|- ( ( ph /\ ( h e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ ( P pCnt ( # ` [ h ] { <. a , b >. | ( { a , b } C_ { s e. ~P X | ( # ` s ) = ( P ^ N ) } /\ E. k e. X ( k ( u e. X , v e. { s e. ~P X | ( # ` s ) = ( P ^ N ) } |-> ran ( s e. v |-> ( u ( +g ` G ) s ) ) ) a ) = b ) } ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) -> E. g e. ( SubGrp ` G ) ( # ` g ) = ( P ^ N ) ) |
36 |
26 35
|
rexlimddv |
|- ( ph -> E. g e. ( SubGrp ` G ) ( # ` g ) = ( P ^ N ) ) |