Metamath Proof Explorer


Theorem slwpgp

Description: A Sylow P -subgroup is a P -group. (Contributed by Mario Carneiro, 16-Jan-2015)

Ref Expression
Hypothesis slwpgp.1 S=G𝑠H
Assertion slwpgp HPpSylGPpGrpS

Proof

Step Hyp Ref Expression
1 slwpgp.1 S=G𝑠H
2 eqid H=H
3 slwsubg HPpSylGHSubGrpG
4 1 slwispgp HPpSylGHSubGrpGHHPpGrpSH=H
5 3 4 mpdan HPpSylGHHPpGrpSH=H
6 2 5 mpbiri HPpSylGHHPpGrpS
7 6 simprd HPpSylGPpGrpS