Description: A Sylow P -subgroup is a P -group. (Contributed by Mario Carneiro, 16-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | slwpgp.1 | |- S = ( G |`s H ) | |
| Assertion | slwpgp | |- ( H e. ( P pSyl G ) -> P pGrp S ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | slwpgp.1 | |- S = ( G |`s H ) | |
| 2 | eqid | |- H = H | |
| 3 | slwsubg | |- ( H e. ( P pSyl G ) -> H e. ( SubGrp ` G ) ) | |
| 4 | 1 | slwispgp | |- ( ( H e. ( P pSyl G ) /\ H e. ( SubGrp ` G ) ) -> ( ( H C_ H /\ P pGrp S ) <-> H = H ) ) | 
| 5 | 3 4 | mpdan | |- ( H e. ( P pSyl G ) -> ( ( H C_ H /\ P pGrp S ) <-> H = H ) ) | 
| 6 | 2 5 | mpbiri | |- ( H e. ( P pSyl G ) -> ( H C_ H /\ P pGrp S ) ) | 
| 7 | 6 | simprd | |- ( H e. ( P pSyl G ) -> P pGrp S ) |