| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fislw.1 | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | slwhash.3 | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 3 |  | slwhash.4 | ⊢ ( 𝜑  →  𝐻  ∈  ( 𝑃  pSyl  𝐺 ) ) | 
						
							| 4 |  | slwsubg | ⊢ ( 𝐻  ∈  ( 𝑃  pSyl  𝐺 )  →  𝐻  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝜑  →  𝐻  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 6 |  | subgrcl | ⊢ ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  →  𝐺  ∈  Grp ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 8 |  | slwprm | ⊢ ( 𝐻  ∈  ( 𝑃  pSyl  𝐺 )  →  𝑃  ∈  ℙ ) | 
						
							| 9 | 3 8 | syl | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 10 | 1 | grpbn0 | ⊢ ( 𝐺  ∈  Grp  →  𝑋  ≠  ∅ ) | 
						
							| 11 | 7 10 | syl | ⊢ ( 𝜑  →  𝑋  ≠  ∅ ) | 
						
							| 12 |  | hashnncl | ⊢ ( 𝑋  ∈  Fin  →  ( ( ♯ ‘ 𝑋 )  ∈  ℕ  ↔  𝑋  ≠  ∅ ) ) | 
						
							| 13 | 2 12 | syl | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑋 )  ∈  ℕ  ↔  𝑋  ≠  ∅ ) ) | 
						
							| 14 | 11 13 | mpbird | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑋 )  ∈  ℕ ) | 
						
							| 15 | 9 14 | pccld | ⊢ ( 𝜑  →  ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) )  ∈  ℕ0 ) | 
						
							| 16 |  | pcdvds | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( ♯ ‘ 𝑋 )  ∈  ℕ )  →  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) )  ∥  ( ♯ ‘ 𝑋 ) ) | 
						
							| 17 | 9 14 16 | syl2anc | ⊢ ( 𝜑  →  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) )  ∥  ( ♯ ‘ 𝑋 ) ) | 
						
							| 18 | 1 7 2 9 15 17 | sylow1 | ⊢ ( 𝜑  →  ∃ 𝑘  ∈  ( SubGrp ‘ 𝐺 ) ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) | 
						
							| 19 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  →  𝑋  ∈  Fin ) | 
						
							| 20 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  →  𝐻  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 21 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  →  𝑘  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 22 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 23 |  | eqid | ⊢ ( 𝐺  ↾s  𝐻 )  =  ( 𝐺  ↾s  𝐻 ) | 
						
							| 24 | 23 | slwpgp | ⊢ ( 𝐻  ∈  ( 𝑃  pSyl  𝐺 )  →  𝑃  pGrp  ( 𝐺  ↾s  𝐻 ) ) | 
						
							| 25 | 3 24 | syl | ⊢ ( 𝜑  →  𝑃  pGrp  ( 𝐺  ↾s  𝐻 ) ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  →  𝑃  pGrp  ( 𝐺  ↾s  𝐻 ) ) | 
						
							| 27 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  →  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) | 
						
							| 28 |  | eqid | ⊢ ( -g ‘ 𝐺 )  =  ( -g ‘ 𝐺 ) | 
						
							| 29 | 1 19 20 21 22 26 27 28 | sylow2b | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  →  ∃ 𝑔  ∈  𝑋 𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) | 
						
							| 30 |  | simprr | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) | 
						
							| 31 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  𝐻  ∈  ( 𝑃  pSyl  𝐺 ) ) | 
						
							| 32 | 31 8 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  𝑃  ∈  ℙ ) | 
						
							| 33 | 15 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) )  ∈  ℕ0 ) | 
						
							| 34 | 21 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  𝑘  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 35 |  | simprl | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  𝑔  ∈  𝑋 ) | 
						
							| 36 |  | eqid | ⊢ ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) )  =  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) | 
						
							| 37 | 1 22 28 36 | conjsubg | ⊢ ( ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑔  ∈  𝑋 )  →  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) )  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 38 | 34 35 37 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) )  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 39 |  | eqid | ⊢ ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) )  =  ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) | 
						
							| 40 | 39 | subgbas | ⊢ ( ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) )  ∈  ( SubGrp ‘ 𝐺 )  →  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) )  =  ( Base ‘ ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) ) ) | 
						
							| 41 | 38 40 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) )  =  ( Base ‘ ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) ) ) | 
						
							| 42 | 41 | fveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  ( ♯ ‘ ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) )  =  ( ♯ ‘ ( Base ‘ ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) ) ) ) | 
						
							| 43 | 1 22 28 36 | conjsubgen | ⊢ ( ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑔  ∈  𝑋 )  →  𝑘  ≈  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) | 
						
							| 44 | 34 35 43 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  𝑘  ≈  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) | 
						
							| 45 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  𝑋  ∈  Fin ) | 
						
							| 46 | 1 | subgss | ⊢ ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  →  𝑘  ⊆  𝑋 ) | 
						
							| 47 | 34 46 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  𝑘  ⊆  𝑋 ) | 
						
							| 48 | 45 47 | ssfid | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  𝑘  ∈  Fin ) | 
						
							| 49 | 1 | subgss | ⊢ ( ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) )  ∈  ( SubGrp ‘ 𝐺 )  →  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) )  ⊆  𝑋 ) | 
						
							| 50 | 38 49 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) )  ⊆  𝑋 ) | 
						
							| 51 | 45 50 | ssfid | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) )  ∈  Fin ) | 
						
							| 52 |  | hashen | ⊢ ( ( 𝑘  ∈  Fin  ∧  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) )  ∈  Fin )  →  ( ( ♯ ‘ 𝑘 )  =  ( ♯ ‘ ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) )  ↔  𝑘  ≈  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) ) | 
						
							| 53 | 48 51 52 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  ( ( ♯ ‘ 𝑘 )  =  ( ♯ ‘ ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) )  ↔  𝑘  ≈  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) ) | 
						
							| 54 | 44 53 | mpbird | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  ( ♯ ‘ 𝑘 )  =  ( ♯ ‘ ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) ) | 
						
							| 55 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) | 
						
							| 56 | 54 55 | eqtr3d | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  ( ♯ ‘ ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) | 
						
							| 57 | 42 56 | eqtr3d | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  ( ♯ ‘ ( Base ‘ ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) ) )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) | 
						
							| 58 |  | oveq2 | ⊢ ( 𝑛  =  ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) )  →  ( 𝑃 ↑ 𝑛 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) | 
						
							| 59 | 58 | rspceeqv | ⊢ ( ( ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) )  ∈  ℕ0  ∧  ( ♯ ‘ ( Base ‘ ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) ) )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) )  →  ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ ( Base ‘ ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) ) )  =  ( 𝑃 ↑ 𝑛 ) ) | 
						
							| 60 | 33 57 59 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ ( Base ‘ ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) ) )  =  ( 𝑃 ↑ 𝑛 ) ) | 
						
							| 61 | 39 | subggrp | ⊢ ( ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) )  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) )  ∈  Grp ) | 
						
							| 62 | 38 61 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) )  ∈  Grp ) | 
						
							| 63 | 41 51 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  ( Base ‘ ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  ∈  Fin ) | 
						
							| 64 |  | eqid | ⊢ ( Base ‘ ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  =  ( Base ‘ ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) ) | 
						
							| 65 | 64 | pgpfi | ⊢ ( ( ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) )  ∈  Grp  ∧  ( Base ‘ ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  ∈  Fin )  →  ( 𝑃  pGrp  ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) )  ↔  ( 𝑃  ∈  ℙ  ∧  ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ ( Base ‘ ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) ) )  =  ( 𝑃 ↑ 𝑛 ) ) ) ) | 
						
							| 66 | 62 63 65 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  ( 𝑃  pGrp  ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) )  ↔  ( 𝑃  ∈  ℙ  ∧  ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ ( Base ‘ ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) ) )  =  ( 𝑃 ↑ 𝑛 ) ) ) ) | 
						
							| 67 | 32 60 66 | mpbir2and | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  𝑃  pGrp  ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) ) | 
						
							| 68 | 39 | slwispgp | ⊢ ( ( 𝐻  ∈  ( 𝑃  pSyl  𝐺 )  ∧  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) )  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( ( 𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) )  ∧  𝑃  pGrp  ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  ↔  𝐻  =  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) ) | 
						
							| 69 | 31 38 68 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  ( ( 𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) )  ∧  𝑃  pGrp  ( 𝐺  ↾s  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  ↔  𝐻  =  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) ) | 
						
							| 70 | 30 67 69 | mpbi2and | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  𝐻  =  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) | 
						
							| 71 | 70 | fveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  ( ♯ ‘ 𝐻 )  =  ( ♯ ‘ ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) ) | 
						
							| 72 | 71 56 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝑘  ↦  ( ( 𝑔 ( +g ‘ 𝐺 ) 𝑥 ) ( -g ‘ 𝐺 ) 𝑔 ) ) ) )  →  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) | 
						
							| 73 | 29 72 | rexlimddv | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  →  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) | 
						
							| 74 | 18 73 | rexlimddv | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) |