| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fislw.1 | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | simpr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  𝐻  ∈  ( 𝑃  pSyl  𝐺 ) )  →  𝐻  ∈  ( 𝑃  pSyl  𝐺 ) ) | 
						
							| 3 |  | slwsubg | ⊢ ( 𝐻  ∈  ( 𝑃  pSyl  𝐺 )  →  𝐻  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 4 | 2 3 | syl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  𝐻  ∈  ( 𝑃  pSyl  𝐺 ) )  →  𝐻  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 5 |  | simpl2 | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  𝐻  ∈  ( 𝑃  pSyl  𝐺 ) )  →  𝑋  ∈  Fin ) | 
						
							| 6 | 1 5 2 | slwhash | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  𝐻  ∈  ( 𝑃  pSyl  𝐺 ) )  →  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) | 
						
							| 7 | 4 6 | jca | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  𝐻  ∈  ( 𝑃  pSyl  𝐺 ) )  →  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) ) | 
						
							| 8 |  | simpl3 | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  →  𝑃  ∈  ℙ ) | 
						
							| 9 |  | simprl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  →  𝐻  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 10 |  | simpl2 | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  →  𝑋  ∈  Fin ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  𝑋  ∈  Fin ) | 
						
							| 12 |  | simprl | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  𝑘  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 13 | 1 | subgss | ⊢ ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  →  𝑘  ⊆  𝑋 ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  𝑘  ⊆  𝑋 ) | 
						
							| 15 | 11 14 | ssfid | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  𝑘  ∈  Fin ) | 
						
							| 16 |  | simprrl | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  𝐻  ⊆  𝑘 ) | 
						
							| 17 |  | ssdomg | ⊢ ( 𝑘  ∈  Fin  →  ( 𝐻  ⊆  𝑘  →  𝐻  ≼  𝑘 ) ) | 
						
							| 18 | 15 16 17 | sylc | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  𝐻  ≼  𝑘 ) | 
						
							| 19 |  | simprrr | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) | 
						
							| 20 |  | eqid | ⊢ ( 𝐺  ↾s  𝑘 )  =  ( 𝐺  ↾s  𝑘 ) | 
						
							| 21 | 20 | subggrp | ⊢ ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝐺  ↾s  𝑘 )  ∈  Grp ) | 
						
							| 22 | 12 21 | syl | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  ( 𝐺  ↾s  𝑘 )  ∈  Grp ) | 
						
							| 23 | 20 | subgbas | ⊢ ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  →  𝑘  =  ( Base ‘ ( 𝐺  ↾s  𝑘 ) ) ) | 
						
							| 24 | 12 23 | syl | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  𝑘  =  ( Base ‘ ( 𝐺  ↾s  𝑘 ) ) ) | 
						
							| 25 | 24 15 | eqeltrrd | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  ( Base ‘ ( 𝐺  ↾s  𝑘 ) )  ∈  Fin ) | 
						
							| 26 |  | eqid | ⊢ ( Base ‘ ( 𝐺  ↾s  𝑘 ) )  =  ( Base ‘ ( 𝐺  ↾s  𝑘 ) ) | 
						
							| 27 | 26 | pgpfi | ⊢ ( ( ( 𝐺  ↾s  𝑘 )  ∈  Grp  ∧  ( Base ‘ ( 𝐺  ↾s  𝑘 ) )  ∈  Fin )  →  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ↔  ( 𝑃  ∈  ℙ  ∧  ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ ( Base ‘ ( 𝐺  ↾s  𝑘 ) ) )  =  ( 𝑃 ↑ 𝑛 ) ) ) ) | 
						
							| 28 | 22 25 27 | syl2anc | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ↔  ( 𝑃  ∈  ℙ  ∧  ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ ( Base ‘ ( 𝐺  ↾s  𝑘 ) ) )  =  ( 𝑃 ↑ 𝑛 ) ) ) ) | 
						
							| 29 | 19 28 | mpbid | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  ( 𝑃  ∈  ℙ  ∧  ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ ( Base ‘ ( 𝐺  ↾s  𝑘 ) ) )  =  ( 𝑃 ↑ 𝑛 ) ) ) | 
						
							| 30 | 29 | simpld | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  𝑃  ∈  ℙ ) | 
						
							| 31 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 32 | 30 31 | syl | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  𝑃  ∈  ℕ ) | 
						
							| 33 | 32 | nnred | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  𝑃  ∈  ℝ ) | 
						
							| 34 | 32 | nnge1d | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  1  ≤  𝑃 ) | 
						
							| 35 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 36 | 35 | subg0cl | ⊢ ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  →  ( 0g ‘ 𝐺 )  ∈  𝑘 ) | 
						
							| 37 | 12 36 | syl | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  ( 0g ‘ 𝐺 )  ∈  𝑘 ) | 
						
							| 38 | 37 | ne0d | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  𝑘  ≠  ∅ ) | 
						
							| 39 |  | hashnncl | ⊢ ( 𝑘  ∈  Fin  →  ( ( ♯ ‘ 𝑘 )  ∈  ℕ  ↔  𝑘  ≠  ∅ ) ) | 
						
							| 40 | 15 39 | syl | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  ( ( ♯ ‘ 𝑘 )  ∈  ℕ  ↔  𝑘  ≠  ∅ ) ) | 
						
							| 41 | 38 40 | mpbird | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  ( ♯ ‘ 𝑘 )  ∈  ℕ ) | 
						
							| 42 | 30 41 | pccld | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  ( 𝑃  pCnt  ( ♯ ‘ 𝑘 ) )  ∈  ℕ0 ) | 
						
							| 43 | 42 | nn0zd | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  ( 𝑃  pCnt  ( ♯ ‘ 𝑘 ) )  ∈  ℤ ) | 
						
							| 44 |  | simpl1 | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  →  𝐺  ∈  Grp ) | 
						
							| 45 | 1 | grpbn0 | ⊢ ( 𝐺  ∈  Grp  →  𝑋  ≠  ∅ ) | 
						
							| 46 | 44 45 | syl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  →  𝑋  ≠  ∅ ) | 
						
							| 47 |  | hashnncl | ⊢ ( 𝑋  ∈  Fin  →  ( ( ♯ ‘ 𝑋 )  ∈  ℕ  ↔  𝑋  ≠  ∅ ) ) | 
						
							| 48 | 10 47 | syl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  →  ( ( ♯ ‘ 𝑋 )  ∈  ℕ  ↔  𝑋  ≠  ∅ ) ) | 
						
							| 49 | 46 48 | mpbird | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  →  ( ♯ ‘ 𝑋 )  ∈  ℕ ) | 
						
							| 50 | 8 49 | pccld | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  →  ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) )  ∈  ℕ0 ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) )  ∈  ℕ0 ) | 
						
							| 52 | 51 | nn0zd | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) )  ∈  ℤ ) | 
						
							| 53 |  | oveq1 | ⊢ ( 𝑝  =  𝑃  →  ( 𝑝  pCnt  ( ♯ ‘ 𝑘 ) )  =  ( 𝑃  pCnt  ( ♯ ‘ 𝑘 ) ) ) | 
						
							| 54 |  | oveq1 | ⊢ ( 𝑝  =  𝑃  →  ( 𝑝  pCnt  ( ♯ ‘ 𝑋 ) )  =  ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) | 
						
							| 55 | 53 54 | breq12d | ⊢ ( 𝑝  =  𝑃  →  ( ( 𝑝  pCnt  ( ♯ ‘ 𝑘 ) )  ≤  ( 𝑝  pCnt  ( ♯ ‘ 𝑋 ) )  ↔  ( 𝑃  pCnt  ( ♯ ‘ 𝑘 ) )  ≤  ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) | 
						
							| 56 | 1 | lagsubg | ⊢ ( ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑋  ∈  Fin )  →  ( ♯ ‘ 𝑘 )  ∥  ( ♯ ‘ 𝑋 ) ) | 
						
							| 57 | 12 11 56 | syl2anc | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  ( ♯ ‘ 𝑘 )  ∥  ( ♯ ‘ 𝑋 ) ) | 
						
							| 58 | 41 | nnzd | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  ( ♯ ‘ 𝑘 )  ∈  ℤ ) | 
						
							| 59 | 49 | adantr | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  ( ♯ ‘ 𝑋 )  ∈  ℕ ) | 
						
							| 60 | 59 | nnzd | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  ( ♯ ‘ 𝑋 )  ∈  ℤ ) | 
						
							| 61 |  | pc2dvds | ⊢ ( ( ( ♯ ‘ 𝑘 )  ∈  ℤ  ∧  ( ♯ ‘ 𝑋 )  ∈  ℤ )  →  ( ( ♯ ‘ 𝑘 )  ∥  ( ♯ ‘ 𝑋 )  ↔  ∀ 𝑝  ∈  ℙ ( 𝑝  pCnt  ( ♯ ‘ 𝑘 ) )  ≤  ( 𝑝  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) | 
						
							| 62 | 58 60 61 | syl2anc | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  ( ( ♯ ‘ 𝑘 )  ∥  ( ♯ ‘ 𝑋 )  ↔  ∀ 𝑝  ∈  ℙ ( 𝑝  pCnt  ( ♯ ‘ 𝑘 ) )  ≤  ( 𝑝  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) | 
						
							| 63 | 57 62 | mpbid | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  ∀ 𝑝  ∈  ℙ ( 𝑝  pCnt  ( ♯ ‘ 𝑘 ) )  ≤  ( 𝑝  pCnt  ( ♯ ‘ 𝑋 ) ) ) | 
						
							| 64 | 55 63 30 | rspcdva | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  ( 𝑃  pCnt  ( ♯ ‘ 𝑘 ) )  ≤  ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) | 
						
							| 65 |  | eluz2 | ⊢ ( ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) )  ∈  ( ℤ≥ ‘ ( 𝑃  pCnt  ( ♯ ‘ 𝑘 ) ) )  ↔  ( ( 𝑃  pCnt  ( ♯ ‘ 𝑘 ) )  ∈  ℤ  ∧  ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) )  ∈  ℤ  ∧  ( 𝑃  pCnt  ( ♯ ‘ 𝑘 ) )  ≤  ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) | 
						
							| 66 | 43 52 64 65 | syl3anbrc | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) )  ∈  ( ℤ≥ ‘ ( 𝑃  pCnt  ( ♯ ‘ 𝑘 ) ) ) ) | 
						
							| 67 | 33 34 66 | leexp2ad | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑘 ) ) )  ≤  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) | 
						
							| 68 | 29 | simprd | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ ( Base ‘ ( 𝐺  ↾s  𝑘 ) ) )  =  ( 𝑃 ↑ 𝑛 ) ) | 
						
							| 69 | 24 | fveqeq2d | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  ( ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ 𝑛 )  ↔  ( ♯ ‘ ( Base ‘ ( 𝐺  ↾s  𝑘 ) ) )  =  ( 𝑃 ↑ 𝑛 ) ) ) | 
						
							| 70 | 69 | rexbidv | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  ( ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ 𝑛 )  ↔  ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ ( Base ‘ ( 𝐺  ↾s  𝑘 ) ) )  =  ( 𝑃 ↑ 𝑛 ) ) ) | 
						
							| 71 | 68 70 | mpbird | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ 𝑛 ) ) | 
						
							| 72 |  | pcprmpw | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( ♯ ‘ 𝑘 )  ∈  ℕ )  →  ( ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ 𝑛 )  ↔  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑘 ) ) ) ) ) | 
						
							| 73 | 30 41 72 | syl2anc | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  ( ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ 𝑛 )  ↔  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑘 ) ) ) ) ) | 
						
							| 74 | 71 73 | mpbid | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  ( ♯ ‘ 𝑘 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑘 ) ) ) ) | 
						
							| 75 |  | simplrr | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) | 
						
							| 76 | 67 74 75 | 3brtr4d | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  ( ♯ ‘ 𝑘 )  ≤  ( ♯ ‘ 𝐻 ) ) | 
						
							| 77 | 1 | subgss | ⊢ ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  →  𝐻  ⊆  𝑋 ) | 
						
							| 78 | 77 | ad2antrl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  →  𝐻  ⊆  𝑋 ) | 
						
							| 79 | 10 78 | ssfid | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  →  𝐻  ∈  Fin ) | 
						
							| 80 | 79 | adantr | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  𝐻  ∈  Fin ) | 
						
							| 81 |  | hashdom | ⊢ ( ( 𝑘  ∈  Fin  ∧  𝐻  ∈  Fin )  →  ( ( ♯ ‘ 𝑘 )  ≤  ( ♯ ‘ 𝐻 )  ↔  𝑘  ≼  𝐻 ) ) | 
						
							| 82 | 15 80 81 | syl2anc | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  ( ( ♯ ‘ 𝑘 )  ≤  ( ♯ ‘ 𝐻 )  ↔  𝑘  ≼  𝐻 ) ) | 
						
							| 83 | 76 82 | mpbid | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  𝑘  ≼  𝐻 ) | 
						
							| 84 |  | sbth | ⊢ ( ( 𝐻  ≼  𝑘  ∧  𝑘  ≼  𝐻 )  →  𝐻  ≈  𝑘 ) | 
						
							| 85 | 18 83 84 | syl2anc | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  𝐻  ≈  𝑘 ) | 
						
							| 86 |  | fisseneq | ⊢ ( ( 𝑘  ∈  Fin  ∧  𝐻  ⊆  𝑘  ∧  𝐻  ≈  𝑘 )  →  𝐻  =  𝑘 ) | 
						
							| 87 | 15 16 85 86 | syl3anc | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  ( 𝑘  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) )  →  𝐻  =  𝑘 ) | 
						
							| 88 | 87 | expr | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  𝑘  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) )  →  𝐻  =  𝑘 ) ) | 
						
							| 89 |  | eqid | ⊢ ( 𝐺  ↾s  𝐻 )  =  ( 𝐺  ↾s  𝐻 ) | 
						
							| 90 | 89 | subgbas | ⊢ ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  →  𝐻  =  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ) | 
						
							| 91 | 90 | ad2antrl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  →  𝐻  =  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ) | 
						
							| 92 | 91 | fveq2d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  →  ( ♯ ‘ 𝐻 )  =  ( ♯ ‘ ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) ) ) | 
						
							| 93 |  | simprr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  →  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) | 
						
							| 94 | 92 93 | eqtr3d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  →  ( ♯ ‘ ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) | 
						
							| 95 |  | oveq2 | ⊢ ( 𝑛  =  ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) )  →  ( 𝑃 ↑ 𝑛 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) | 
						
							| 96 | 95 | rspceeqv | ⊢ ( ( ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) )  ∈  ℕ0  ∧  ( ♯ ‘ ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) )  →  ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) )  =  ( 𝑃 ↑ 𝑛 ) ) | 
						
							| 97 | 50 94 96 | syl2anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  →  ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) )  =  ( 𝑃 ↑ 𝑛 ) ) | 
						
							| 98 | 89 | subggrp | ⊢ ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝐺  ↾s  𝐻 )  ∈  Grp ) | 
						
							| 99 | 98 | ad2antrl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  →  ( 𝐺  ↾s  𝐻 )  ∈  Grp ) | 
						
							| 100 | 91 79 | eqeltrrd | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  →  ( Base ‘ ( 𝐺  ↾s  𝐻 ) )  ∈  Fin ) | 
						
							| 101 |  | eqid | ⊢ ( Base ‘ ( 𝐺  ↾s  𝐻 ) )  =  ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) | 
						
							| 102 | 101 | pgpfi | ⊢ ( ( ( 𝐺  ↾s  𝐻 )  ∈  Grp  ∧  ( Base ‘ ( 𝐺  ↾s  𝐻 ) )  ∈  Fin )  →  ( 𝑃  pGrp  ( 𝐺  ↾s  𝐻 )  ↔  ( 𝑃  ∈  ℙ  ∧  ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) )  =  ( 𝑃 ↑ 𝑛 ) ) ) ) | 
						
							| 103 | 99 100 102 | syl2anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  →  ( 𝑃  pGrp  ( 𝐺  ↾s  𝐻 )  ↔  ( 𝑃  ∈  ℙ  ∧  ∃ 𝑛  ∈  ℕ0 ( ♯ ‘ ( Base ‘ ( 𝐺  ↾s  𝐻 ) ) )  =  ( 𝑃 ↑ 𝑛 ) ) ) ) | 
						
							| 104 | 8 97 103 | mpbir2and | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  →  𝑃  pGrp  ( 𝐺  ↾s  𝐻 ) ) | 
						
							| 105 | 104 | adantr | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  𝑘  ∈  ( SubGrp ‘ 𝐺 ) )  →  𝑃  pGrp  ( 𝐺  ↾s  𝐻 ) ) | 
						
							| 106 |  | oveq2 | ⊢ ( 𝐻  =  𝑘  →  ( 𝐺  ↾s  𝐻 )  =  ( 𝐺  ↾s  𝑘 ) ) | 
						
							| 107 | 106 | breq2d | ⊢ ( 𝐻  =  𝑘  →  ( 𝑃  pGrp  ( 𝐺  ↾s  𝐻 )  ↔  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) | 
						
							| 108 |  | eqimss | ⊢ ( 𝐻  =  𝑘  →  𝐻  ⊆  𝑘 ) | 
						
							| 109 | 108 | biantrurd | ⊢ ( 𝐻  =  𝑘  →  ( 𝑃  pGrp  ( 𝐺  ↾s  𝑘 )  ↔  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) ) | 
						
							| 110 | 107 109 | bitrd | ⊢ ( 𝐻  =  𝑘  →  ( 𝑃  pGrp  ( 𝐺  ↾s  𝐻 )  ↔  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) ) | 
						
							| 111 | 105 110 | syl5ibcom | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  𝑘  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( 𝐻  =  𝑘  →  ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) ) ) ) | 
						
							| 112 | 88 111 | impbid | ⊢ ( ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  ∧  𝑘  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) )  ↔  𝐻  =  𝑘 ) ) | 
						
							| 113 | 112 | ralrimiva | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  →  ∀ 𝑘  ∈  ( SubGrp ‘ 𝐺 ) ( ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) )  ↔  𝐻  =  𝑘 ) ) | 
						
							| 114 |  | isslw | ⊢ ( 𝐻  ∈  ( 𝑃  pSyl  𝐺 )  ↔  ( 𝑃  ∈  ℙ  ∧  𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( SubGrp ‘ 𝐺 ) ( ( 𝐻  ⊆  𝑘  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑘 ) )  ↔  𝐻  =  𝑘 ) ) ) | 
						
							| 115 | 8 9 113 114 | syl3anbrc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  ∧  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) )  →  𝐻  ∈  ( 𝑃  pSyl  𝐺 ) ) | 
						
							| 116 | 7 115 | impbida | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  →  ( 𝐻  ∈  ( 𝑃  pSyl  𝐺 )  ↔  ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) ) ) |