| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fislw.1 |  |-  X = ( Base ` G ) | 
						
							| 2 |  | simpr |  |-  ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ H e. ( P pSyl G ) ) -> H e. ( P pSyl G ) ) | 
						
							| 3 |  | slwsubg |  |-  ( H e. ( P pSyl G ) -> H e. ( SubGrp ` G ) ) | 
						
							| 4 | 2 3 | syl |  |-  ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ H e. ( P pSyl G ) ) -> H e. ( SubGrp ` G ) ) | 
						
							| 5 |  | simpl2 |  |-  ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ H e. ( P pSyl G ) ) -> X e. Fin ) | 
						
							| 6 | 1 5 2 | slwhash |  |-  ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ H e. ( P pSyl G ) ) -> ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) | 
						
							| 7 | 4 6 | jca |  |-  ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ H e. ( P pSyl G ) ) -> ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) | 
						
							| 8 |  | simpl3 |  |-  ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> P e. Prime ) | 
						
							| 9 |  | simprl |  |-  ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> H e. ( SubGrp ` G ) ) | 
						
							| 10 |  | simpl2 |  |-  ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> X e. Fin ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> X e. Fin ) | 
						
							| 12 |  | simprl |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> k e. ( SubGrp ` G ) ) | 
						
							| 13 | 1 | subgss |  |-  ( k e. ( SubGrp ` G ) -> k C_ X ) | 
						
							| 14 | 12 13 | syl |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> k C_ X ) | 
						
							| 15 | 11 14 | ssfid |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> k e. Fin ) | 
						
							| 16 |  | simprrl |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> H C_ k ) | 
						
							| 17 |  | ssdomg |  |-  ( k e. Fin -> ( H C_ k -> H ~<_ k ) ) | 
						
							| 18 | 15 16 17 | sylc |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> H ~<_ k ) | 
						
							| 19 |  | simprrr |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> P pGrp ( G |`s k ) ) | 
						
							| 20 |  | eqid |  |-  ( G |`s k ) = ( G |`s k ) | 
						
							| 21 | 20 | subggrp |  |-  ( k e. ( SubGrp ` G ) -> ( G |`s k ) e. Grp ) | 
						
							| 22 | 12 21 | syl |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( G |`s k ) e. Grp ) | 
						
							| 23 | 20 | subgbas |  |-  ( k e. ( SubGrp ` G ) -> k = ( Base ` ( G |`s k ) ) ) | 
						
							| 24 | 12 23 | syl |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> k = ( Base ` ( G |`s k ) ) ) | 
						
							| 25 | 24 15 | eqeltrrd |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( Base ` ( G |`s k ) ) e. Fin ) | 
						
							| 26 |  | eqid |  |-  ( Base ` ( G |`s k ) ) = ( Base ` ( G |`s k ) ) | 
						
							| 27 | 26 | pgpfi |  |-  ( ( ( G |`s k ) e. Grp /\ ( Base ` ( G |`s k ) ) e. Fin ) -> ( P pGrp ( G |`s k ) <-> ( P e. Prime /\ E. n e. NN0 ( # ` ( Base ` ( G |`s k ) ) ) = ( P ^ n ) ) ) ) | 
						
							| 28 | 22 25 27 | syl2anc |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( P pGrp ( G |`s k ) <-> ( P e. Prime /\ E. n e. NN0 ( # ` ( Base ` ( G |`s k ) ) ) = ( P ^ n ) ) ) ) | 
						
							| 29 | 19 28 | mpbid |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( P e. Prime /\ E. n e. NN0 ( # ` ( Base ` ( G |`s k ) ) ) = ( P ^ n ) ) ) | 
						
							| 30 | 29 | simpld |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> P e. Prime ) | 
						
							| 31 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 32 | 30 31 | syl |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> P e. NN ) | 
						
							| 33 | 32 | nnred |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> P e. RR ) | 
						
							| 34 | 32 | nnge1d |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> 1 <_ P ) | 
						
							| 35 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 36 | 35 | subg0cl |  |-  ( k e. ( SubGrp ` G ) -> ( 0g ` G ) e. k ) | 
						
							| 37 | 12 36 | syl |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( 0g ` G ) e. k ) | 
						
							| 38 | 37 | ne0d |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> k =/= (/) ) | 
						
							| 39 |  | hashnncl |  |-  ( k e. Fin -> ( ( # ` k ) e. NN <-> k =/= (/) ) ) | 
						
							| 40 | 15 39 | syl |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( ( # ` k ) e. NN <-> k =/= (/) ) ) | 
						
							| 41 | 38 40 | mpbird |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( # ` k ) e. NN ) | 
						
							| 42 | 30 41 | pccld |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( P pCnt ( # ` k ) ) e. NN0 ) | 
						
							| 43 | 42 | nn0zd |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( P pCnt ( # ` k ) ) e. ZZ ) | 
						
							| 44 |  | simpl1 |  |-  ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> G e. Grp ) | 
						
							| 45 | 1 | grpbn0 |  |-  ( G e. Grp -> X =/= (/) ) | 
						
							| 46 | 44 45 | syl |  |-  ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> X =/= (/) ) | 
						
							| 47 |  | hashnncl |  |-  ( X e. Fin -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) | 
						
							| 48 | 10 47 | syl |  |-  ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) | 
						
							| 49 | 46 48 | mpbird |  |-  ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> ( # ` X ) e. NN ) | 
						
							| 50 | 8 49 | pccld |  |-  ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> ( P pCnt ( # ` X ) ) e. NN0 ) | 
						
							| 51 | 50 | adantr |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( P pCnt ( # ` X ) ) e. NN0 ) | 
						
							| 52 | 51 | nn0zd |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( P pCnt ( # ` X ) ) e. ZZ ) | 
						
							| 53 |  | oveq1 |  |-  ( p = P -> ( p pCnt ( # ` k ) ) = ( P pCnt ( # ` k ) ) ) | 
						
							| 54 |  | oveq1 |  |-  ( p = P -> ( p pCnt ( # ` X ) ) = ( P pCnt ( # ` X ) ) ) | 
						
							| 55 | 53 54 | breq12d |  |-  ( p = P -> ( ( p pCnt ( # ` k ) ) <_ ( p pCnt ( # ` X ) ) <-> ( P pCnt ( # ` k ) ) <_ ( P pCnt ( # ` X ) ) ) ) | 
						
							| 56 | 1 | lagsubg |  |-  ( ( k e. ( SubGrp ` G ) /\ X e. Fin ) -> ( # ` k ) || ( # ` X ) ) | 
						
							| 57 | 12 11 56 | syl2anc |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( # ` k ) || ( # ` X ) ) | 
						
							| 58 | 41 | nnzd |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( # ` k ) e. ZZ ) | 
						
							| 59 | 49 | adantr |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( # ` X ) e. NN ) | 
						
							| 60 | 59 | nnzd |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( # ` X ) e. ZZ ) | 
						
							| 61 |  | pc2dvds |  |-  ( ( ( # ` k ) e. ZZ /\ ( # ` X ) e. ZZ ) -> ( ( # ` k ) || ( # ` X ) <-> A. p e. Prime ( p pCnt ( # ` k ) ) <_ ( p pCnt ( # ` X ) ) ) ) | 
						
							| 62 | 58 60 61 | syl2anc |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( ( # ` k ) || ( # ` X ) <-> A. p e. Prime ( p pCnt ( # ` k ) ) <_ ( p pCnt ( # ` X ) ) ) ) | 
						
							| 63 | 57 62 | mpbid |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> A. p e. Prime ( p pCnt ( # ` k ) ) <_ ( p pCnt ( # ` X ) ) ) | 
						
							| 64 | 55 63 30 | rspcdva |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( P pCnt ( # ` k ) ) <_ ( P pCnt ( # ` X ) ) ) | 
						
							| 65 |  | eluz2 |  |-  ( ( P pCnt ( # ` X ) ) e. ( ZZ>= ` ( P pCnt ( # ` k ) ) ) <-> ( ( P pCnt ( # ` k ) ) e. ZZ /\ ( P pCnt ( # ` X ) ) e. ZZ /\ ( P pCnt ( # ` k ) ) <_ ( P pCnt ( # ` X ) ) ) ) | 
						
							| 66 | 43 52 64 65 | syl3anbrc |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( P pCnt ( # ` X ) ) e. ( ZZ>= ` ( P pCnt ( # ` k ) ) ) ) | 
						
							| 67 | 33 34 66 | leexp2ad |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( P ^ ( P pCnt ( # ` k ) ) ) <_ ( P ^ ( P pCnt ( # ` X ) ) ) ) | 
						
							| 68 | 29 | simprd |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> E. n e. NN0 ( # ` ( Base ` ( G |`s k ) ) ) = ( P ^ n ) ) | 
						
							| 69 | 24 | fveqeq2d |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( ( # ` k ) = ( P ^ n ) <-> ( # ` ( Base ` ( G |`s k ) ) ) = ( P ^ n ) ) ) | 
						
							| 70 | 69 | rexbidv |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( E. n e. NN0 ( # ` k ) = ( P ^ n ) <-> E. n e. NN0 ( # ` ( Base ` ( G |`s k ) ) ) = ( P ^ n ) ) ) | 
						
							| 71 | 68 70 | mpbird |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> E. n e. NN0 ( # ` k ) = ( P ^ n ) ) | 
						
							| 72 |  | pcprmpw |  |-  ( ( P e. Prime /\ ( # ` k ) e. NN ) -> ( E. n e. NN0 ( # ` k ) = ( P ^ n ) <-> ( # ` k ) = ( P ^ ( P pCnt ( # ` k ) ) ) ) ) | 
						
							| 73 | 30 41 72 | syl2anc |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( E. n e. NN0 ( # ` k ) = ( P ^ n ) <-> ( # ` k ) = ( P ^ ( P pCnt ( # ` k ) ) ) ) ) | 
						
							| 74 | 71 73 | mpbid |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( # ` k ) = ( P ^ ( P pCnt ( # ` k ) ) ) ) | 
						
							| 75 |  | simplrr |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) | 
						
							| 76 | 67 74 75 | 3brtr4d |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( # ` k ) <_ ( # ` H ) ) | 
						
							| 77 | 1 | subgss |  |-  ( H e. ( SubGrp ` G ) -> H C_ X ) | 
						
							| 78 | 77 | ad2antrl |  |-  ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> H C_ X ) | 
						
							| 79 | 10 78 | ssfid |  |-  ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> H e. Fin ) | 
						
							| 80 | 79 | adantr |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> H e. Fin ) | 
						
							| 81 |  | hashdom |  |-  ( ( k e. Fin /\ H e. Fin ) -> ( ( # ` k ) <_ ( # ` H ) <-> k ~<_ H ) ) | 
						
							| 82 | 15 80 81 | syl2anc |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( ( # ` k ) <_ ( # ` H ) <-> k ~<_ H ) ) | 
						
							| 83 | 76 82 | mpbid |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> k ~<_ H ) | 
						
							| 84 |  | sbth |  |-  ( ( H ~<_ k /\ k ~<_ H ) -> H ~~ k ) | 
						
							| 85 | 18 83 84 | syl2anc |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> H ~~ k ) | 
						
							| 86 |  | fisseneq |  |-  ( ( k e. Fin /\ H C_ k /\ H ~~ k ) -> H = k ) | 
						
							| 87 | 15 16 85 86 | syl3anc |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> H = k ) | 
						
							| 88 | 87 | expr |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ k e. ( SubGrp ` G ) ) -> ( ( H C_ k /\ P pGrp ( G |`s k ) ) -> H = k ) ) | 
						
							| 89 |  | eqid |  |-  ( G |`s H ) = ( G |`s H ) | 
						
							| 90 | 89 | subgbas |  |-  ( H e. ( SubGrp ` G ) -> H = ( Base ` ( G |`s H ) ) ) | 
						
							| 91 | 90 | ad2antrl |  |-  ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> H = ( Base ` ( G |`s H ) ) ) | 
						
							| 92 | 91 | fveq2d |  |-  ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> ( # ` H ) = ( # ` ( Base ` ( G |`s H ) ) ) ) | 
						
							| 93 |  | simprr |  |-  ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) | 
						
							| 94 | 92 93 | eqtr3d |  |-  ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> ( # ` ( Base ` ( G |`s H ) ) ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) | 
						
							| 95 |  | oveq2 |  |-  ( n = ( P pCnt ( # ` X ) ) -> ( P ^ n ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) | 
						
							| 96 | 95 | rspceeqv |  |-  ( ( ( P pCnt ( # ` X ) ) e. NN0 /\ ( # ` ( Base ` ( G |`s H ) ) ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) -> E. n e. NN0 ( # ` ( Base ` ( G |`s H ) ) ) = ( P ^ n ) ) | 
						
							| 97 | 50 94 96 | syl2anc |  |-  ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> E. n e. NN0 ( # ` ( Base ` ( G |`s H ) ) ) = ( P ^ n ) ) | 
						
							| 98 | 89 | subggrp |  |-  ( H e. ( SubGrp ` G ) -> ( G |`s H ) e. Grp ) | 
						
							| 99 | 98 | ad2antrl |  |-  ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> ( G |`s H ) e. Grp ) | 
						
							| 100 | 91 79 | eqeltrrd |  |-  ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> ( Base ` ( G |`s H ) ) e. Fin ) | 
						
							| 101 |  | eqid |  |-  ( Base ` ( G |`s H ) ) = ( Base ` ( G |`s H ) ) | 
						
							| 102 | 101 | pgpfi |  |-  ( ( ( G |`s H ) e. Grp /\ ( Base ` ( G |`s H ) ) e. Fin ) -> ( P pGrp ( G |`s H ) <-> ( P e. Prime /\ E. n e. NN0 ( # ` ( Base ` ( G |`s H ) ) ) = ( P ^ n ) ) ) ) | 
						
							| 103 | 99 100 102 | syl2anc |  |-  ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> ( P pGrp ( G |`s H ) <-> ( P e. Prime /\ E. n e. NN0 ( # ` ( Base ` ( G |`s H ) ) ) = ( P ^ n ) ) ) ) | 
						
							| 104 | 8 97 103 | mpbir2and |  |-  ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> P pGrp ( G |`s H ) ) | 
						
							| 105 | 104 | adantr |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ k e. ( SubGrp ` G ) ) -> P pGrp ( G |`s H ) ) | 
						
							| 106 |  | oveq2 |  |-  ( H = k -> ( G |`s H ) = ( G |`s k ) ) | 
						
							| 107 | 106 | breq2d |  |-  ( H = k -> ( P pGrp ( G |`s H ) <-> P pGrp ( G |`s k ) ) ) | 
						
							| 108 |  | eqimss |  |-  ( H = k -> H C_ k ) | 
						
							| 109 | 108 | biantrurd |  |-  ( H = k -> ( P pGrp ( G |`s k ) <-> ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) | 
						
							| 110 | 107 109 | bitrd |  |-  ( H = k -> ( P pGrp ( G |`s H ) <-> ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) | 
						
							| 111 | 105 110 | syl5ibcom |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ k e. ( SubGrp ` G ) ) -> ( H = k -> ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) | 
						
							| 112 | 88 111 | impbid |  |-  ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ k e. ( SubGrp ` G ) ) -> ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) | 
						
							| 113 | 112 | ralrimiva |  |-  ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> A. k e. ( SubGrp ` G ) ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) | 
						
							| 114 |  | isslw |  |-  ( H e. ( P pSyl G ) <-> ( P e. Prime /\ H e. ( SubGrp ` G ) /\ A. k e. ( SubGrp ` G ) ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) ) | 
						
							| 115 | 8 9 113 114 | syl3anbrc |  |-  ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> H e. ( P pSyl G ) ) | 
						
							| 116 | 7 115 | impbida |  |-  ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) -> ( H e. ( P pSyl G ) <-> ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) ) |