| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fislw.1 |
|- X = ( Base ` G ) |
| 2 |
|
simpr |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ H e. ( P pSyl G ) ) -> H e. ( P pSyl G ) ) |
| 3 |
|
slwsubg |
|- ( H e. ( P pSyl G ) -> H e. ( SubGrp ` G ) ) |
| 4 |
2 3
|
syl |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ H e. ( P pSyl G ) ) -> H e. ( SubGrp ` G ) ) |
| 5 |
|
simpl2 |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ H e. ( P pSyl G ) ) -> X e. Fin ) |
| 6 |
1 5 2
|
slwhash |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ H e. ( P pSyl G ) ) -> ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) |
| 7 |
4 6
|
jca |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ H e. ( P pSyl G ) ) -> ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) |
| 8 |
|
simpl3 |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> P e. Prime ) |
| 9 |
|
simprl |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> H e. ( SubGrp ` G ) ) |
| 10 |
|
simpl2 |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> X e. Fin ) |
| 11 |
10
|
adantr |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> X e. Fin ) |
| 12 |
|
simprl |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> k e. ( SubGrp ` G ) ) |
| 13 |
1
|
subgss |
|- ( k e. ( SubGrp ` G ) -> k C_ X ) |
| 14 |
12 13
|
syl |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> k C_ X ) |
| 15 |
11 14
|
ssfid |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> k e. Fin ) |
| 16 |
|
simprrl |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> H C_ k ) |
| 17 |
|
ssdomg |
|- ( k e. Fin -> ( H C_ k -> H ~<_ k ) ) |
| 18 |
15 16 17
|
sylc |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> H ~<_ k ) |
| 19 |
|
simprrr |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> P pGrp ( G |`s k ) ) |
| 20 |
|
eqid |
|- ( G |`s k ) = ( G |`s k ) |
| 21 |
20
|
subggrp |
|- ( k e. ( SubGrp ` G ) -> ( G |`s k ) e. Grp ) |
| 22 |
12 21
|
syl |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( G |`s k ) e. Grp ) |
| 23 |
20
|
subgbas |
|- ( k e. ( SubGrp ` G ) -> k = ( Base ` ( G |`s k ) ) ) |
| 24 |
12 23
|
syl |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> k = ( Base ` ( G |`s k ) ) ) |
| 25 |
24 15
|
eqeltrrd |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( Base ` ( G |`s k ) ) e. Fin ) |
| 26 |
|
eqid |
|- ( Base ` ( G |`s k ) ) = ( Base ` ( G |`s k ) ) |
| 27 |
26
|
pgpfi |
|- ( ( ( G |`s k ) e. Grp /\ ( Base ` ( G |`s k ) ) e. Fin ) -> ( P pGrp ( G |`s k ) <-> ( P e. Prime /\ E. n e. NN0 ( # ` ( Base ` ( G |`s k ) ) ) = ( P ^ n ) ) ) ) |
| 28 |
22 25 27
|
syl2anc |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( P pGrp ( G |`s k ) <-> ( P e. Prime /\ E. n e. NN0 ( # ` ( Base ` ( G |`s k ) ) ) = ( P ^ n ) ) ) ) |
| 29 |
19 28
|
mpbid |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( P e. Prime /\ E. n e. NN0 ( # ` ( Base ` ( G |`s k ) ) ) = ( P ^ n ) ) ) |
| 30 |
29
|
simpld |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> P e. Prime ) |
| 31 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 32 |
30 31
|
syl |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> P e. NN ) |
| 33 |
32
|
nnred |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> P e. RR ) |
| 34 |
32
|
nnge1d |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> 1 <_ P ) |
| 35 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 36 |
35
|
subg0cl |
|- ( k e. ( SubGrp ` G ) -> ( 0g ` G ) e. k ) |
| 37 |
12 36
|
syl |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( 0g ` G ) e. k ) |
| 38 |
37
|
ne0d |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> k =/= (/) ) |
| 39 |
|
hashnncl |
|- ( k e. Fin -> ( ( # ` k ) e. NN <-> k =/= (/) ) ) |
| 40 |
15 39
|
syl |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( ( # ` k ) e. NN <-> k =/= (/) ) ) |
| 41 |
38 40
|
mpbird |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( # ` k ) e. NN ) |
| 42 |
30 41
|
pccld |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( P pCnt ( # ` k ) ) e. NN0 ) |
| 43 |
42
|
nn0zd |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( P pCnt ( # ` k ) ) e. ZZ ) |
| 44 |
|
simpl1 |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> G e. Grp ) |
| 45 |
1
|
grpbn0 |
|- ( G e. Grp -> X =/= (/) ) |
| 46 |
44 45
|
syl |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> X =/= (/) ) |
| 47 |
|
hashnncl |
|- ( X e. Fin -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) |
| 48 |
10 47
|
syl |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) |
| 49 |
46 48
|
mpbird |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> ( # ` X ) e. NN ) |
| 50 |
8 49
|
pccld |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> ( P pCnt ( # ` X ) ) e. NN0 ) |
| 51 |
50
|
adantr |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( P pCnt ( # ` X ) ) e. NN0 ) |
| 52 |
51
|
nn0zd |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( P pCnt ( # ` X ) ) e. ZZ ) |
| 53 |
|
oveq1 |
|- ( p = P -> ( p pCnt ( # ` k ) ) = ( P pCnt ( # ` k ) ) ) |
| 54 |
|
oveq1 |
|- ( p = P -> ( p pCnt ( # ` X ) ) = ( P pCnt ( # ` X ) ) ) |
| 55 |
53 54
|
breq12d |
|- ( p = P -> ( ( p pCnt ( # ` k ) ) <_ ( p pCnt ( # ` X ) ) <-> ( P pCnt ( # ` k ) ) <_ ( P pCnt ( # ` X ) ) ) ) |
| 56 |
1
|
lagsubg |
|- ( ( k e. ( SubGrp ` G ) /\ X e. Fin ) -> ( # ` k ) || ( # ` X ) ) |
| 57 |
12 11 56
|
syl2anc |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( # ` k ) || ( # ` X ) ) |
| 58 |
41
|
nnzd |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( # ` k ) e. ZZ ) |
| 59 |
49
|
adantr |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( # ` X ) e. NN ) |
| 60 |
59
|
nnzd |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( # ` X ) e. ZZ ) |
| 61 |
|
pc2dvds |
|- ( ( ( # ` k ) e. ZZ /\ ( # ` X ) e. ZZ ) -> ( ( # ` k ) || ( # ` X ) <-> A. p e. Prime ( p pCnt ( # ` k ) ) <_ ( p pCnt ( # ` X ) ) ) ) |
| 62 |
58 60 61
|
syl2anc |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( ( # ` k ) || ( # ` X ) <-> A. p e. Prime ( p pCnt ( # ` k ) ) <_ ( p pCnt ( # ` X ) ) ) ) |
| 63 |
57 62
|
mpbid |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> A. p e. Prime ( p pCnt ( # ` k ) ) <_ ( p pCnt ( # ` X ) ) ) |
| 64 |
55 63 30
|
rspcdva |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( P pCnt ( # ` k ) ) <_ ( P pCnt ( # ` X ) ) ) |
| 65 |
|
eluz2 |
|- ( ( P pCnt ( # ` X ) ) e. ( ZZ>= ` ( P pCnt ( # ` k ) ) ) <-> ( ( P pCnt ( # ` k ) ) e. ZZ /\ ( P pCnt ( # ` X ) ) e. ZZ /\ ( P pCnt ( # ` k ) ) <_ ( P pCnt ( # ` X ) ) ) ) |
| 66 |
43 52 64 65
|
syl3anbrc |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( P pCnt ( # ` X ) ) e. ( ZZ>= ` ( P pCnt ( # ` k ) ) ) ) |
| 67 |
33 34 66
|
leexp2ad |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( P ^ ( P pCnt ( # ` k ) ) ) <_ ( P ^ ( P pCnt ( # ` X ) ) ) ) |
| 68 |
29
|
simprd |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> E. n e. NN0 ( # ` ( Base ` ( G |`s k ) ) ) = ( P ^ n ) ) |
| 69 |
24
|
fveqeq2d |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( ( # ` k ) = ( P ^ n ) <-> ( # ` ( Base ` ( G |`s k ) ) ) = ( P ^ n ) ) ) |
| 70 |
69
|
rexbidv |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( E. n e. NN0 ( # ` k ) = ( P ^ n ) <-> E. n e. NN0 ( # ` ( Base ` ( G |`s k ) ) ) = ( P ^ n ) ) ) |
| 71 |
68 70
|
mpbird |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> E. n e. NN0 ( # ` k ) = ( P ^ n ) ) |
| 72 |
|
pcprmpw |
|- ( ( P e. Prime /\ ( # ` k ) e. NN ) -> ( E. n e. NN0 ( # ` k ) = ( P ^ n ) <-> ( # ` k ) = ( P ^ ( P pCnt ( # ` k ) ) ) ) ) |
| 73 |
30 41 72
|
syl2anc |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( E. n e. NN0 ( # ` k ) = ( P ^ n ) <-> ( # ` k ) = ( P ^ ( P pCnt ( # ` k ) ) ) ) ) |
| 74 |
71 73
|
mpbid |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( # ` k ) = ( P ^ ( P pCnt ( # ` k ) ) ) ) |
| 75 |
|
simplrr |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) |
| 76 |
67 74 75
|
3brtr4d |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( # ` k ) <_ ( # ` H ) ) |
| 77 |
1
|
subgss |
|- ( H e. ( SubGrp ` G ) -> H C_ X ) |
| 78 |
77
|
ad2antrl |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> H C_ X ) |
| 79 |
10 78
|
ssfid |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> H e. Fin ) |
| 80 |
79
|
adantr |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> H e. Fin ) |
| 81 |
|
hashdom |
|- ( ( k e. Fin /\ H e. Fin ) -> ( ( # ` k ) <_ ( # ` H ) <-> k ~<_ H ) ) |
| 82 |
15 80 81
|
syl2anc |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> ( ( # ` k ) <_ ( # ` H ) <-> k ~<_ H ) ) |
| 83 |
76 82
|
mpbid |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> k ~<_ H ) |
| 84 |
|
sbth |
|- ( ( H ~<_ k /\ k ~<_ H ) -> H ~~ k ) |
| 85 |
18 83 84
|
syl2anc |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> H ~~ k ) |
| 86 |
|
fisseneq |
|- ( ( k e. Fin /\ H C_ k /\ H ~~ k ) -> H = k ) |
| 87 |
15 16 85 86
|
syl3anc |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( k e. ( SubGrp ` G ) /\ ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) -> H = k ) |
| 88 |
87
|
expr |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ k e. ( SubGrp ` G ) ) -> ( ( H C_ k /\ P pGrp ( G |`s k ) ) -> H = k ) ) |
| 89 |
|
eqid |
|- ( G |`s H ) = ( G |`s H ) |
| 90 |
89
|
subgbas |
|- ( H e. ( SubGrp ` G ) -> H = ( Base ` ( G |`s H ) ) ) |
| 91 |
90
|
ad2antrl |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> H = ( Base ` ( G |`s H ) ) ) |
| 92 |
91
|
fveq2d |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> ( # ` H ) = ( # ` ( Base ` ( G |`s H ) ) ) ) |
| 93 |
|
simprr |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) |
| 94 |
92 93
|
eqtr3d |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> ( # ` ( Base ` ( G |`s H ) ) ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) |
| 95 |
|
oveq2 |
|- ( n = ( P pCnt ( # ` X ) ) -> ( P ^ n ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) |
| 96 |
95
|
rspceeqv |
|- ( ( ( P pCnt ( # ` X ) ) e. NN0 /\ ( # ` ( Base ` ( G |`s H ) ) ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) -> E. n e. NN0 ( # ` ( Base ` ( G |`s H ) ) ) = ( P ^ n ) ) |
| 97 |
50 94 96
|
syl2anc |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> E. n e. NN0 ( # ` ( Base ` ( G |`s H ) ) ) = ( P ^ n ) ) |
| 98 |
89
|
subggrp |
|- ( H e. ( SubGrp ` G ) -> ( G |`s H ) e. Grp ) |
| 99 |
98
|
ad2antrl |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> ( G |`s H ) e. Grp ) |
| 100 |
91 79
|
eqeltrrd |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> ( Base ` ( G |`s H ) ) e. Fin ) |
| 101 |
|
eqid |
|- ( Base ` ( G |`s H ) ) = ( Base ` ( G |`s H ) ) |
| 102 |
101
|
pgpfi |
|- ( ( ( G |`s H ) e. Grp /\ ( Base ` ( G |`s H ) ) e. Fin ) -> ( P pGrp ( G |`s H ) <-> ( P e. Prime /\ E. n e. NN0 ( # ` ( Base ` ( G |`s H ) ) ) = ( P ^ n ) ) ) ) |
| 103 |
99 100 102
|
syl2anc |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> ( P pGrp ( G |`s H ) <-> ( P e. Prime /\ E. n e. NN0 ( # ` ( Base ` ( G |`s H ) ) ) = ( P ^ n ) ) ) ) |
| 104 |
8 97 103
|
mpbir2and |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> P pGrp ( G |`s H ) ) |
| 105 |
104
|
adantr |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ k e. ( SubGrp ` G ) ) -> P pGrp ( G |`s H ) ) |
| 106 |
|
oveq2 |
|- ( H = k -> ( G |`s H ) = ( G |`s k ) ) |
| 107 |
106
|
breq2d |
|- ( H = k -> ( P pGrp ( G |`s H ) <-> P pGrp ( G |`s k ) ) ) |
| 108 |
|
eqimss |
|- ( H = k -> H C_ k ) |
| 109 |
108
|
biantrurd |
|- ( H = k -> ( P pGrp ( G |`s k ) <-> ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) |
| 110 |
107 109
|
bitrd |
|- ( H = k -> ( P pGrp ( G |`s H ) <-> ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) |
| 111 |
105 110
|
syl5ibcom |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ k e. ( SubGrp ` G ) ) -> ( H = k -> ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) |
| 112 |
88 111
|
impbid |
|- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ k e. ( SubGrp ` G ) ) -> ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) |
| 113 |
112
|
ralrimiva |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> A. k e. ( SubGrp ` G ) ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) |
| 114 |
|
isslw |
|- ( H e. ( P pSyl G ) <-> ( P e. Prime /\ H e. ( SubGrp ` G ) /\ A. k e. ( SubGrp ` G ) ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) ) |
| 115 |
8 9 113 114
|
syl3anbrc |
|- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> H e. ( P pSyl G ) ) |
| 116 |
7 115
|
impbida |
|- ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) -> ( H e. ( P pSyl G ) <-> ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) ) |