| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sylow2.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | sylow2.f |  |-  ( ph -> X e. Fin ) | 
						
							| 3 |  | sylow2.h |  |-  ( ph -> H e. ( P pSyl G ) ) | 
						
							| 4 |  | sylow2.k |  |-  ( ph -> K e. ( P pSyl G ) ) | 
						
							| 5 |  | sylow2.a |  |-  .+ = ( +g ` G ) | 
						
							| 6 |  | sylow2.d |  |-  .- = ( -g ` G ) | 
						
							| 7 | 2 | adantr |  |-  ( ( ph /\ ( g e. X /\ H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) ) -> X e. Fin ) | 
						
							| 8 |  | slwsubg |  |-  ( K e. ( P pSyl G ) -> K e. ( SubGrp ` G ) ) | 
						
							| 9 | 4 8 | syl |  |-  ( ph -> K e. ( SubGrp ` G ) ) | 
						
							| 10 |  | simprl |  |-  ( ( ph /\ ( g e. X /\ H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) ) -> g e. X ) | 
						
							| 11 |  | eqid |  |-  ( x e. K |-> ( ( g .+ x ) .- g ) ) = ( x e. K |-> ( ( g .+ x ) .- g ) ) | 
						
							| 12 | 1 5 6 11 | conjsubg |  |-  ( ( K e. ( SubGrp ` G ) /\ g e. X ) -> ran ( x e. K |-> ( ( g .+ x ) .- g ) ) e. ( SubGrp ` G ) ) | 
						
							| 13 | 9 10 12 | syl2an2r |  |-  ( ( ph /\ ( g e. X /\ H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) ) -> ran ( x e. K |-> ( ( g .+ x ) .- g ) ) e. ( SubGrp ` G ) ) | 
						
							| 14 | 1 | subgss |  |-  ( ran ( x e. K |-> ( ( g .+ x ) .- g ) ) e. ( SubGrp ` G ) -> ran ( x e. K |-> ( ( g .+ x ) .- g ) ) C_ X ) | 
						
							| 15 | 13 14 | syl |  |-  ( ( ph /\ ( g e. X /\ H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) ) -> ran ( x e. K |-> ( ( g .+ x ) .- g ) ) C_ X ) | 
						
							| 16 | 7 15 | ssfid |  |-  ( ( ph /\ ( g e. X /\ H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) ) -> ran ( x e. K |-> ( ( g .+ x ) .- g ) ) e. Fin ) | 
						
							| 17 |  | simprr |  |-  ( ( ph /\ ( g e. X /\ H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) ) -> H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) | 
						
							| 18 | 1 2 3 | slwhash |  |-  ( ph -> ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) | 
						
							| 19 | 1 2 4 | slwhash |  |-  ( ph -> ( # ` K ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) | 
						
							| 20 | 18 19 | eqtr4d |  |-  ( ph -> ( # ` H ) = ( # ` K ) ) | 
						
							| 21 |  | slwsubg |  |-  ( H e. ( P pSyl G ) -> H e. ( SubGrp ` G ) ) | 
						
							| 22 | 3 21 | syl |  |-  ( ph -> H e. ( SubGrp ` G ) ) | 
						
							| 23 | 1 | subgss |  |-  ( H e. ( SubGrp ` G ) -> H C_ X ) | 
						
							| 24 | 22 23 | syl |  |-  ( ph -> H C_ X ) | 
						
							| 25 | 2 24 | ssfid |  |-  ( ph -> H e. Fin ) | 
						
							| 26 | 1 | subgss |  |-  ( K e. ( SubGrp ` G ) -> K C_ X ) | 
						
							| 27 | 9 26 | syl |  |-  ( ph -> K C_ X ) | 
						
							| 28 | 2 27 | ssfid |  |-  ( ph -> K e. Fin ) | 
						
							| 29 |  | hashen |  |-  ( ( H e. Fin /\ K e. Fin ) -> ( ( # ` H ) = ( # ` K ) <-> H ~~ K ) ) | 
						
							| 30 | 25 28 29 | syl2anc |  |-  ( ph -> ( ( # ` H ) = ( # ` K ) <-> H ~~ K ) ) | 
						
							| 31 | 20 30 | mpbid |  |-  ( ph -> H ~~ K ) | 
						
							| 32 | 1 5 6 11 | conjsubgen |  |-  ( ( K e. ( SubGrp ` G ) /\ g e. X ) -> K ~~ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) | 
						
							| 33 | 9 10 32 | syl2an2r |  |-  ( ( ph /\ ( g e. X /\ H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) ) -> K ~~ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) | 
						
							| 34 |  | entr |  |-  ( ( H ~~ K /\ K ~~ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) -> H ~~ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) | 
						
							| 35 | 31 33 34 | syl2an2r |  |-  ( ( ph /\ ( g e. X /\ H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) ) -> H ~~ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) | 
						
							| 36 |  | fisseneq |  |-  ( ( ran ( x e. K |-> ( ( g .+ x ) .- g ) ) e. Fin /\ H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) /\ H ~~ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) -> H = ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) | 
						
							| 37 | 16 17 35 36 | syl3anc |  |-  ( ( ph /\ ( g e. X /\ H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) ) -> H = ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) | 
						
							| 38 |  | eqid |  |-  ( G |`s H ) = ( G |`s H ) | 
						
							| 39 | 38 | slwpgp |  |-  ( H e. ( P pSyl G ) -> P pGrp ( G |`s H ) ) | 
						
							| 40 | 3 39 | syl |  |-  ( ph -> P pGrp ( G |`s H ) ) | 
						
							| 41 | 1 2 22 9 5 40 19 6 | sylow2b |  |-  ( ph -> E. g e. X H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) | 
						
							| 42 | 37 41 | reximddv |  |-  ( ph -> E. g e. X H = ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) |