| Step |
Hyp |
Ref |
Expression |
| 1 |
|
conjghm.x |
|- X = ( Base ` G ) |
| 2 |
|
conjghm.p |
|- .+ = ( +g ` G ) |
| 3 |
|
conjghm.m |
|- .- = ( -g ` G ) |
| 4 |
|
conjsubg.f |
|- F = ( x e. S |-> ( ( A .+ x ) .- A ) ) |
| 5 |
1
|
subgss |
|- ( S e. ( SubGrp ` G ) -> S C_ X ) |
| 6 |
5
|
adantr |
|- ( ( S e. ( SubGrp ` G ) /\ A e. X ) -> S C_ X ) |
| 7 |
|
df-ima |
|- ( ( x e. X |-> ( ( A .+ x ) .- A ) ) " S ) = ran ( ( x e. X |-> ( ( A .+ x ) .- A ) ) |` S ) |
| 8 |
|
resmpt |
|- ( S C_ X -> ( ( x e. X |-> ( ( A .+ x ) .- A ) ) |` S ) = ( x e. S |-> ( ( A .+ x ) .- A ) ) ) |
| 9 |
8 4
|
eqtr4di |
|- ( S C_ X -> ( ( x e. X |-> ( ( A .+ x ) .- A ) ) |` S ) = F ) |
| 10 |
9
|
rneqd |
|- ( S C_ X -> ran ( ( x e. X |-> ( ( A .+ x ) .- A ) ) |` S ) = ran F ) |
| 11 |
7 10
|
eqtrid |
|- ( S C_ X -> ( ( x e. X |-> ( ( A .+ x ) .- A ) ) " S ) = ran F ) |
| 12 |
6 11
|
syl |
|- ( ( S e. ( SubGrp ` G ) /\ A e. X ) -> ( ( x e. X |-> ( ( A .+ x ) .- A ) ) " S ) = ran F ) |
| 13 |
|
subgrcl |
|- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
| 14 |
|
eqid |
|- ( x e. X |-> ( ( A .+ x ) .- A ) ) = ( x e. X |-> ( ( A .+ x ) .- A ) ) |
| 15 |
1 2 3 14
|
conjghm |
|- ( ( G e. Grp /\ A e. X ) -> ( ( x e. X |-> ( ( A .+ x ) .- A ) ) e. ( G GrpHom G ) /\ ( x e. X |-> ( ( A .+ x ) .- A ) ) : X -1-1-onto-> X ) ) |
| 16 |
13 15
|
sylan |
|- ( ( S e. ( SubGrp ` G ) /\ A e. X ) -> ( ( x e. X |-> ( ( A .+ x ) .- A ) ) e. ( G GrpHom G ) /\ ( x e. X |-> ( ( A .+ x ) .- A ) ) : X -1-1-onto-> X ) ) |
| 17 |
16
|
simpld |
|- ( ( S e. ( SubGrp ` G ) /\ A e. X ) -> ( x e. X |-> ( ( A .+ x ) .- A ) ) e. ( G GrpHom G ) ) |
| 18 |
|
simpl |
|- ( ( S e. ( SubGrp ` G ) /\ A e. X ) -> S e. ( SubGrp ` G ) ) |
| 19 |
|
ghmima |
|- ( ( ( x e. X |-> ( ( A .+ x ) .- A ) ) e. ( G GrpHom G ) /\ S e. ( SubGrp ` G ) ) -> ( ( x e. X |-> ( ( A .+ x ) .- A ) ) " S ) e. ( SubGrp ` G ) ) |
| 20 |
17 18 19
|
syl2anc |
|- ( ( S e. ( SubGrp ` G ) /\ A e. X ) -> ( ( x e. X |-> ( ( A .+ x ) .- A ) ) " S ) e. ( SubGrp ` G ) ) |
| 21 |
12 20
|
eqeltrrd |
|- ( ( S e. ( SubGrp ` G ) /\ A e. X ) -> ran F e. ( SubGrp ` G ) ) |