| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sylow2.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | sylow2.f | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 3 |  | sylow2.h | ⊢ ( 𝜑  →  𝐻  ∈  ( 𝑃  pSyl  𝐺 ) ) | 
						
							| 4 |  | sylow2.k | ⊢ ( 𝜑  →  𝐾  ∈  ( 𝑃  pSyl  𝐺 ) ) | 
						
							| 5 |  | sylow2.a | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 6 |  | sylow2.d | ⊢  −   =  ( -g ‘ 𝐺 ) | 
						
							| 7 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ) )  →  𝑋  ∈  Fin ) | 
						
							| 8 |  | slwsubg | ⊢ ( 𝐾  ∈  ( 𝑃  pSyl  𝐺 )  →  𝐾  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 9 | 4 8 | syl | ⊢ ( 𝜑  →  𝐾  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 10 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ) )  →  𝑔  ∈  𝑋 ) | 
						
							| 11 |  | eqid | ⊢ ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) )  =  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) | 
						
							| 12 | 1 5 6 11 | conjsubg | ⊢ ( ( 𝐾  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑔  ∈  𝑋 )  →  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) )  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 13 | 9 10 12 | syl2an2r | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ) )  →  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) )  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 14 | 1 | subgss | ⊢ ( ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) )  ∈  ( SubGrp ‘ 𝐺 )  →  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) )  ⊆  𝑋 ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ) )  →  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) )  ⊆  𝑋 ) | 
						
							| 16 | 7 15 | ssfid | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ) )  →  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) )  ∈  Fin ) | 
						
							| 17 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ) )  →  𝐻  ⊆  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ) | 
						
							| 18 | 1 2 3 | slwhash | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐻 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) | 
						
							| 19 | 1 2 4 | slwhash | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐾 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) | 
						
							| 20 | 18 19 | eqtr4d | ⊢ ( 𝜑  →  ( ♯ ‘ 𝐻 )  =  ( ♯ ‘ 𝐾 ) ) | 
						
							| 21 |  | slwsubg | ⊢ ( 𝐻  ∈  ( 𝑃  pSyl  𝐺 )  →  𝐻  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 22 | 3 21 | syl | ⊢ ( 𝜑  →  𝐻  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 23 | 1 | subgss | ⊢ ( 𝐻  ∈  ( SubGrp ‘ 𝐺 )  →  𝐻  ⊆  𝑋 ) | 
						
							| 24 | 22 23 | syl | ⊢ ( 𝜑  →  𝐻  ⊆  𝑋 ) | 
						
							| 25 | 2 24 | ssfid | ⊢ ( 𝜑  →  𝐻  ∈  Fin ) | 
						
							| 26 | 1 | subgss | ⊢ ( 𝐾  ∈  ( SubGrp ‘ 𝐺 )  →  𝐾  ⊆  𝑋 ) | 
						
							| 27 | 9 26 | syl | ⊢ ( 𝜑  →  𝐾  ⊆  𝑋 ) | 
						
							| 28 | 2 27 | ssfid | ⊢ ( 𝜑  →  𝐾  ∈  Fin ) | 
						
							| 29 |  | hashen | ⊢ ( ( 𝐻  ∈  Fin  ∧  𝐾  ∈  Fin )  →  ( ( ♯ ‘ 𝐻 )  =  ( ♯ ‘ 𝐾 )  ↔  𝐻  ≈  𝐾 ) ) | 
						
							| 30 | 25 28 29 | syl2anc | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝐻 )  =  ( ♯ ‘ 𝐾 )  ↔  𝐻  ≈  𝐾 ) ) | 
						
							| 31 | 20 30 | mpbid | ⊢ ( 𝜑  →  𝐻  ≈  𝐾 ) | 
						
							| 32 | 1 5 6 11 | conjsubgen | ⊢ ( ( 𝐾  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑔  ∈  𝑋 )  →  𝐾  ≈  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ) | 
						
							| 33 | 9 10 32 | syl2an2r | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ) )  →  𝐾  ≈  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ) | 
						
							| 34 |  | entr | ⊢ ( ( 𝐻  ≈  𝐾  ∧  𝐾  ≈  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) )  →  𝐻  ≈  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ) | 
						
							| 35 | 31 33 34 | syl2an2r | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ) )  →  𝐻  ≈  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ) | 
						
							| 36 |  | fisseneq | ⊢ ( ( ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) )  ∈  Fin  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) )  ∧  𝐻  ≈  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) )  →  𝐻  =  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ) | 
						
							| 37 | 16 17 35 36 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑔  ∈  𝑋  ∧  𝐻  ⊆  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ) )  →  𝐻  =  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ) | 
						
							| 38 |  | eqid | ⊢ ( 𝐺  ↾s  𝐻 )  =  ( 𝐺  ↾s  𝐻 ) | 
						
							| 39 | 38 | slwpgp | ⊢ ( 𝐻  ∈  ( 𝑃  pSyl  𝐺 )  →  𝑃  pGrp  ( 𝐺  ↾s  𝐻 ) ) | 
						
							| 40 | 3 39 | syl | ⊢ ( 𝜑  →  𝑃  pGrp  ( 𝐺  ↾s  𝐻 ) ) | 
						
							| 41 | 1 2 22 9 5 40 19 6 | sylow2b | ⊢ ( 𝜑  →  ∃ 𝑔  ∈  𝑋 𝐻  ⊆  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ) | 
						
							| 42 | 37 41 | reximddv | ⊢ ( 𝜑  →  ∃ 𝑔  ∈  𝑋 𝐻  =  ran  ( 𝑥  ∈  𝐾  ↦  ( ( 𝑔  +  𝑥 )  −  𝑔 ) ) ) |