Description: Sylow's second theorem. See also sylow2b for the "hard" part of the proof. Any two Sylow P -subgroups are conjugate to one another, and hence the same size, namely P ^ ( P pCnt | X | ) (see fislw ). This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 18-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sylow2.x | |
|
sylow2.f | |
||
sylow2.h | |
||
sylow2.k | |
||
sylow2.a | |
||
sylow2.d | |
||
Assertion | sylow2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylow2.x | |
|
2 | sylow2.f | |
|
3 | sylow2.h | |
|
4 | sylow2.k | |
|
5 | sylow2.a | |
|
6 | sylow2.d | |
|
7 | 2 | adantr | |
8 | slwsubg | |
|
9 | 4 8 | syl | |
10 | simprl | |
|
11 | eqid | |
|
12 | 1 5 6 11 | conjsubg | |
13 | 9 10 12 | syl2an2r | |
14 | 1 | subgss | |
15 | 13 14 | syl | |
16 | 7 15 | ssfid | |
17 | simprr | |
|
18 | 1 2 3 | slwhash | |
19 | 1 2 4 | slwhash | |
20 | 18 19 | eqtr4d | |
21 | slwsubg | |
|
22 | 3 21 | syl | |
23 | 1 | subgss | |
24 | 22 23 | syl | |
25 | 2 24 | ssfid | |
26 | 1 | subgss | |
27 | 9 26 | syl | |
28 | 2 27 | ssfid | |
29 | hashen | |
|
30 | 25 28 29 | syl2anc | |
31 | 20 30 | mpbid | |
32 | 1 5 6 11 | conjsubgen | |
33 | 9 10 32 | syl2an2r | |
34 | entr | |
|
35 | 31 33 34 | syl2an2r | |
36 | fisseneq | |
|
37 | 16 17 35 36 | syl3anc | |
38 | eqid | |
|
39 | 38 | slwpgp | |
40 | 3 39 | syl | |
41 | 1 2 22 9 5 40 19 6 | sylow2b | |
42 | 37 41 | reximddv | |