Metamath Proof Explorer


Theorem sylow2

Description: Sylow's second theorem. See also sylow2b for the "hard" part of the proof. Any two Sylow P -subgroups are conjugate to one another, and hence the same size, namely P ^ ( P pCnt | X | ) (see fislw ). This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 18-Jan-2015)

Ref Expression
Hypotheses sylow2.x X=BaseG
sylow2.f φXFin
sylow2.h φHPpSylG
sylow2.k φKPpSylG
sylow2.a +˙=+G
sylow2.d -˙=-G
Assertion sylow2 φgXH=ranxKg+˙x-˙g

Proof

Step Hyp Ref Expression
1 sylow2.x X=BaseG
2 sylow2.f φXFin
3 sylow2.h φHPpSylG
4 sylow2.k φKPpSylG
5 sylow2.a +˙=+G
6 sylow2.d -˙=-G
7 2 adantr φgXHranxKg+˙x-˙gXFin
8 slwsubg KPpSylGKSubGrpG
9 4 8 syl φKSubGrpG
10 simprl φgXHranxKg+˙x-˙ggX
11 eqid xKg+˙x-˙g=xKg+˙x-˙g
12 1 5 6 11 conjsubg KSubGrpGgXranxKg+˙x-˙gSubGrpG
13 9 10 12 syl2an2r φgXHranxKg+˙x-˙granxKg+˙x-˙gSubGrpG
14 1 subgss ranxKg+˙x-˙gSubGrpGranxKg+˙x-˙gX
15 13 14 syl φgXHranxKg+˙x-˙granxKg+˙x-˙gX
16 7 15 ssfid φgXHranxKg+˙x-˙granxKg+˙x-˙gFin
17 simprr φgXHranxKg+˙x-˙gHranxKg+˙x-˙g
18 1 2 3 slwhash φH=PPpCntX
19 1 2 4 slwhash φK=PPpCntX
20 18 19 eqtr4d φH=K
21 slwsubg HPpSylGHSubGrpG
22 3 21 syl φHSubGrpG
23 1 subgss HSubGrpGHX
24 22 23 syl φHX
25 2 24 ssfid φHFin
26 1 subgss KSubGrpGKX
27 9 26 syl φKX
28 2 27 ssfid φKFin
29 hashen HFinKFinH=KHK
30 25 28 29 syl2anc φH=KHK
31 20 30 mpbid φHK
32 1 5 6 11 conjsubgen KSubGrpGgXKranxKg+˙x-˙g
33 9 10 32 syl2an2r φgXHranxKg+˙x-˙gKranxKg+˙x-˙g
34 entr HKKranxKg+˙x-˙gHranxKg+˙x-˙g
35 31 33 34 syl2an2r φgXHranxKg+˙x-˙gHranxKg+˙x-˙g
36 fisseneq ranxKg+˙x-˙gFinHranxKg+˙x-˙gHranxKg+˙x-˙gH=ranxKg+˙x-˙g
37 16 17 35 36 syl3anc φgXHranxKg+˙x-˙gH=ranxKg+˙x-˙g
38 eqid G𝑠H=G𝑠H
39 38 slwpgp HPpSylGPpGrpG𝑠H
40 3 39 syl φPpGrpG𝑠H
41 1 2 22 9 5 40 19 6 sylow2b φgXHranxKg+˙x-˙g
42 37 41 reximddv φgXH=ranxKg+˙x-˙g