| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sylow3.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | sylow3.g | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 3 |  | sylow3.xf | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 4 |  | sylow3.p | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 5 |  | sylow3lem1.a | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 6 |  | sylow3lem1.d | ⊢  −   =  ( -g ‘ 𝐺 ) | 
						
							| 7 |  | sylow3lem1.m | ⊢  ⊕   =  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  ( 𝑃  pSyl  𝐺 )  ↦  ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) ) ) | 
						
							| 8 |  | ovex | ⊢ ( 𝑃  pSyl  𝐺 )  ∈  V | 
						
							| 9 | 2 8 | jctir | ⊢ ( 𝜑  →  ( 𝐺  ∈  Grp  ∧  ( 𝑃  pSyl  𝐺 )  ∈  V ) ) | 
						
							| 10 | 1 | fislw | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  →  ( 𝑦  ∈  ( 𝑃  pSyl  𝐺 )  ↔  ( 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) ) ) | 
						
							| 11 | 2 3 4 10 | syl3anc | ⊢ ( 𝜑  →  ( 𝑦  ∈  ( 𝑃  pSyl  𝐺 )  ↔  ( 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) ) ) | 
						
							| 12 | 11 | biimpa | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝑃  pSyl  𝐺 ) )  →  ( 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) ) | 
						
							| 13 | 12 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  ( 𝑃  pSyl  𝐺 ) ) )  →  ( 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑦 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) ) | 
						
							| 14 | 13 | simpld | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  ( 𝑃  pSyl  𝐺 ) ) )  →  𝑦  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 15 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  ( 𝑃  pSyl  𝐺 ) ) )  →  𝑥  ∈  𝑋 ) | 
						
							| 16 |  | eqid | ⊢ ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) )  =  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) ) | 
						
							| 17 | 1 5 6 16 | conjsubg | ⊢ ( ( 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑥  ∈  𝑋 )  →  ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) )  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 18 | 14 15 17 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  ( 𝑃  pSyl  𝐺 ) ) )  →  ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) )  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 19 | 1 5 6 16 | conjsubgen | ⊢ ( ( 𝑦  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑥  ∈  𝑋 )  →  𝑦  ≈  ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) ) ) | 
						
							| 20 | 14 15 19 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  ( 𝑃  pSyl  𝐺 ) ) )  →  𝑦  ≈  ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) ) ) | 
						
							| 21 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  ( 𝑃  pSyl  𝐺 ) ) )  →  𝑋  ∈  Fin ) | 
						
							| 22 | 1 | subgss | ⊢ ( 𝑦  ∈  ( SubGrp ‘ 𝐺 )  →  𝑦  ⊆  𝑋 ) | 
						
							| 23 | 14 22 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  ( 𝑃  pSyl  𝐺 ) ) )  →  𝑦  ⊆  𝑋 ) | 
						
							| 24 | 21 23 | ssfid | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  ( 𝑃  pSyl  𝐺 ) ) )  →  𝑦  ∈  Fin ) | 
						
							| 25 | 1 | subgss | ⊢ ( ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) )  ∈  ( SubGrp ‘ 𝐺 )  →  ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) )  ⊆  𝑋 ) | 
						
							| 26 | 18 25 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  ( 𝑃  pSyl  𝐺 ) ) )  →  ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) )  ⊆  𝑋 ) | 
						
							| 27 | 21 26 | ssfid | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  ( 𝑃  pSyl  𝐺 ) ) )  →  ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) )  ∈  Fin ) | 
						
							| 28 |  | hashen | ⊢ ( ( 𝑦  ∈  Fin  ∧  ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) )  ∈  Fin )  →  ( ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) ) )  ↔  𝑦  ≈  ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) ) ) ) | 
						
							| 29 | 24 27 28 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  ( 𝑃  pSyl  𝐺 ) ) )  →  ( ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) ) )  ↔  𝑦  ≈  ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) ) ) ) | 
						
							| 30 | 20 29 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  ( 𝑃  pSyl  𝐺 ) ) )  →  ( ♯ ‘ 𝑦 )  =  ( ♯ ‘ ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) ) ) ) | 
						
							| 31 | 13 | simprd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  ( 𝑃  pSyl  𝐺 ) ) )  →  ( ♯ ‘ 𝑦 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) | 
						
							| 32 | 30 31 | eqtr3d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  ( 𝑃  pSyl  𝐺 ) ) )  →  ( ♯ ‘ ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) ) )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) | 
						
							| 33 | 1 | fislw | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  →  ( ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) )  ∈  ( 𝑃  pSyl  𝐺 )  ↔  ( ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) )  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) ) )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) ) ) | 
						
							| 34 | 2 3 4 33 | syl3anc | ⊢ ( 𝜑  →  ( ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) )  ∈  ( 𝑃  pSyl  𝐺 )  ↔  ( ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) )  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) ) )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) ) ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  ( 𝑃  pSyl  𝐺 ) ) )  →  ( ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) )  ∈  ( 𝑃  pSyl  𝐺 )  ↔  ( ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) )  ∈  ( SubGrp ‘ 𝐺 )  ∧  ( ♯ ‘ ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) ) )  =  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) ) ) | 
						
							| 36 | 18 32 35 | mpbir2and | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  ( 𝑃  pSyl  𝐺 ) ) )  →  ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) )  ∈  ( 𝑃  pSyl  𝐺 ) ) | 
						
							| 37 | 36 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  ( 𝑃  pSyl  𝐺 ) ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) )  ∈  ( 𝑃  pSyl  𝐺 ) ) | 
						
							| 38 | 7 | fmpo | ⊢ ( ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  ( 𝑃  pSyl  𝐺 ) ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) )  ∈  ( 𝑃  pSyl  𝐺 )  ↔   ⊕  : ( 𝑋  ×  ( 𝑃  pSyl  𝐺 ) ) ⟶ ( 𝑃  pSyl  𝐺 ) ) | 
						
							| 39 | 37 38 | sylib | ⊢ ( 𝜑  →   ⊕  : ( 𝑋  ×  ( 𝑃  pSyl  𝐺 ) ) ⟶ ( 𝑃  pSyl  𝐺 ) ) | 
						
							| 40 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  →  𝐺  ∈  Grp ) | 
						
							| 41 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 42 | 1 41 | grpidcl | ⊢ ( 𝐺  ∈  Grp  →  ( 0g ‘ 𝐺 )  ∈  𝑋 ) | 
						
							| 43 | 40 42 | syl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  →  ( 0g ‘ 𝐺 )  ∈  𝑋 ) | 
						
							| 44 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  →  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) ) | 
						
							| 45 |  | simpr | ⊢ ( ( 𝑥  =  ( 0g ‘ 𝐺 )  ∧  𝑦  =  𝑎 )  →  𝑦  =  𝑎 ) | 
						
							| 46 |  | simpl | ⊢ ( ( 𝑥  =  ( 0g ‘ 𝐺 )  ∧  𝑦  =  𝑎 )  →  𝑥  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 47 | 46 | oveq1d | ⊢ ( ( 𝑥  =  ( 0g ‘ 𝐺 )  ∧  𝑦  =  𝑎 )  →  ( 𝑥  +  𝑧 )  =  ( ( 0g ‘ 𝐺 )  +  𝑧 ) ) | 
						
							| 48 | 47 46 | oveq12d | ⊢ ( ( 𝑥  =  ( 0g ‘ 𝐺 )  ∧  𝑦  =  𝑎 )  →  ( ( 𝑥  +  𝑧 )  −  𝑥 )  =  ( ( ( 0g ‘ 𝐺 )  +  𝑧 )  −  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 49 | 45 48 | mpteq12dv | ⊢ ( ( 𝑥  =  ( 0g ‘ 𝐺 )  ∧  𝑦  =  𝑎 )  →  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) )  =  ( 𝑧  ∈  𝑎  ↦  ( ( ( 0g ‘ 𝐺 )  +  𝑧 )  −  ( 0g ‘ 𝐺 ) ) ) ) | 
						
							| 50 | 49 | rneqd | ⊢ ( ( 𝑥  =  ( 0g ‘ 𝐺 )  ∧  𝑦  =  𝑎 )  →  ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) )  =  ran  ( 𝑧  ∈  𝑎  ↦  ( ( ( 0g ‘ 𝐺 )  +  𝑧 )  −  ( 0g ‘ 𝐺 ) ) ) ) | 
						
							| 51 |  | vex | ⊢ 𝑎  ∈  V | 
						
							| 52 | 51 | mptex | ⊢ ( 𝑧  ∈  𝑎  ↦  ( ( ( 0g ‘ 𝐺 )  +  𝑧 )  −  ( 0g ‘ 𝐺 ) ) )  ∈  V | 
						
							| 53 | 52 | rnex | ⊢ ran  ( 𝑧  ∈  𝑎  ↦  ( ( ( 0g ‘ 𝐺 )  +  𝑧 )  −  ( 0g ‘ 𝐺 ) ) )  ∈  V | 
						
							| 54 | 50 7 53 | ovmpoa | ⊢ ( ( ( 0g ‘ 𝐺 )  ∈  𝑋  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  →  ( ( 0g ‘ 𝐺 )  ⊕  𝑎 )  =  ran  ( 𝑧  ∈  𝑎  ↦  ( ( ( 0g ‘ 𝐺 )  +  𝑧 )  −  ( 0g ‘ 𝐺 ) ) ) ) | 
						
							| 55 | 43 44 54 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  →  ( ( 0g ‘ 𝐺 )  ⊕  𝑎 )  =  ran  ( 𝑧  ∈  𝑎  ↦  ( ( ( 0g ‘ 𝐺 )  +  𝑧 )  −  ( 0g ‘ 𝐺 ) ) ) ) | 
						
							| 56 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝑧  ∈  𝑎 )  →  𝐺  ∈  Grp ) | 
						
							| 57 |  | slwsubg | ⊢ ( 𝑎  ∈  ( 𝑃  pSyl  𝐺 )  →  𝑎  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 58 | 57 | adantl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  →  𝑎  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 59 | 1 | subgss | ⊢ ( 𝑎  ∈  ( SubGrp ‘ 𝐺 )  →  𝑎  ⊆  𝑋 ) | 
						
							| 60 | 58 59 | syl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  →  𝑎  ⊆  𝑋 ) | 
						
							| 61 | 60 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝑧  ∈  𝑎 )  →  𝑧  ∈  𝑋 ) | 
						
							| 62 | 1 5 41 | grplid | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑋 )  →  ( ( 0g ‘ 𝐺 )  +  𝑧 )  =  𝑧 ) | 
						
							| 63 | 56 61 62 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝑧  ∈  𝑎 )  →  ( ( 0g ‘ 𝐺 )  +  𝑧 )  =  𝑧 ) | 
						
							| 64 | 63 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝑧  ∈  𝑎 )  →  ( ( ( 0g ‘ 𝐺 )  +  𝑧 )  −  ( 0g ‘ 𝐺 ) )  =  ( 𝑧  −  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 65 | 1 41 6 | grpsubid1 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑧  ∈  𝑋 )  →  ( 𝑧  −  ( 0g ‘ 𝐺 ) )  =  𝑧 ) | 
						
							| 66 | 56 61 65 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝑧  ∈  𝑎 )  →  ( 𝑧  −  ( 0g ‘ 𝐺 ) )  =  𝑧 ) | 
						
							| 67 | 64 66 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝑧  ∈  𝑎 )  →  ( ( ( 0g ‘ 𝐺 )  +  𝑧 )  −  ( 0g ‘ 𝐺 ) )  =  𝑧 ) | 
						
							| 68 | 67 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  →  ( 𝑧  ∈  𝑎  ↦  ( ( ( 0g ‘ 𝐺 )  +  𝑧 )  −  ( 0g ‘ 𝐺 ) ) )  =  ( 𝑧  ∈  𝑎  ↦  𝑧 ) ) | 
						
							| 69 |  | mptresid | ⊢ (  I   ↾  𝑎 )  =  ( 𝑧  ∈  𝑎  ↦  𝑧 ) | 
						
							| 70 | 68 69 | eqtr4di | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  →  ( 𝑧  ∈  𝑎  ↦  ( ( ( 0g ‘ 𝐺 )  +  𝑧 )  −  ( 0g ‘ 𝐺 ) ) )  =  (  I   ↾  𝑎 ) ) | 
						
							| 71 | 70 | rneqd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  →  ran  ( 𝑧  ∈  𝑎  ↦  ( ( ( 0g ‘ 𝐺 )  +  𝑧 )  −  ( 0g ‘ 𝐺 ) ) )  =  ran  (  I   ↾  𝑎 ) ) | 
						
							| 72 |  | rnresi | ⊢ ran  (  I   ↾  𝑎 )  =  𝑎 | 
						
							| 73 | 71 72 | eqtrdi | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  →  ran  ( 𝑧  ∈  𝑎  ↦  ( ( ( 0g ‘ 𝐺 )  +  𝑧 )  −  ( 0g ‘ 𝐺 ) ) )  =  𝑎 ) | 
						
							| 74 | 55 73 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  →  ( ( 0g ‘ 𝐺 )  ⊕  𝑎 )  =  𝑎 ) | 
						
							| 75 |  | ovex | ⊢ ( ( 𝑐  +  𝑧 )  −  𝑐 )  ∈  V | 
						
							| 76 |  | oveq2 | ⊢ ( 𝑤  =  ( ( 𝑐  +  𝑧 )  −  𝑐 )  →  ( 𝑏  +  𝑤 )  =  ( 𝑏  +  ( ( 𝑐  +  𝑧 )  −  𝑐 ) ) ) | 
						
							| 77 | 76 | oveq1d | ⊢ ( 𝑤  =  ( ( 𝑐  +  𝑧 )  −  𝑐 )  →  ( ( 𝑏  +  𝑤 )  −  𝑏 )  =  ( ( 𝑏  +  ( ( 𝑐  +  𝑧 )  −  𝑐 ) )  −  𝑏 ) ) | 
						
							| 78 | 75 77 | abrexco | ⊢ { 𝑢  ∣  ∃ 𝑤  ∈  { 𝑣  ∣  ∃ 𝑧  ∈  𝑎 𝑣  =  ( ( 𝑐  +  𝑧 )  −  𝑐 ) } 𝑢  =  ( ( 𝑏  +  𝑤 )  −  𝑏 ) }  =  { 𝑢  ∣  ∃ 𝑧  ∈  𝑎 𝑢  =  ( ( 𝑏  +  ( ( 𝑐  +  𝑧 )  −  𝑐 ) )  −  𝑏 ) } | 
						
							| 79 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  ( 𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  𝑐  ∈  𝑋 ) | 
						
							| 80 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  ( 𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) ) | 
						
							| 81 |  | simpr | ⊢ ( ( 𝑥  =  𝑐  ∧  𝑦  =  𝑎 )  →  𝑦  =  𝑎 ) | 
						
							| 82 |  | simpl | ⊢ ( ( 𝑥  =  𝑐  ∧  𝑦  =  𝑎 )  →  𝑥  =  𝑐 ) | 
						
							| 83 | 82 | oveq1d | ⊢ ( ( 𝑥  =  𝑐  ∧  𝑦  =  𝑎 )  →  ( 𝑥  +  𝑧 )  =  ( 𝑐  +  𝑧 ) ) | 
						
							| 84 | 83 82 | oveq12d | ⊢ ( ( 𝑥  =  𝑐  ∧  𝑦  =  𝑎 )  →  ( ( 𝑥  +  𝑧 )  −  𝑥 )  =  ( ( 𝑐  +  𝑧 )  −  𝑐 ) ) | 
						
							| 85 | 81 84 | mpteq12dv | ⊢ ( ( 𝑥  =  𝑐  ∧  𝑦  =  𝑎 )  →  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) )  =  ( 𝑧  ∈  𝑎  ↦  ( ( 𝑐  +  𝑧 )  −  𝑐 ) ) ) | 
						
							| 86 | 85 | rneqd | ⊢ ( ( 𝑥  =  𝑐  ∧  𝑦  =  𝑎 )  →  ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) )  =  ran  ( 𝑧  ∈  𝑎  ↦  ( ( 𝑐  +  𝑧 )  −  𝑐 ) ) ) | 
						
							| 87 | 51 | mptex | ⊢ ( 𝑧  ∈  𝑎  ↦  ( ( 𝑐  +  𝑧 )  −  𝑐 ) )  ∈  V | 
						
							| 88 | 87 | rnex | ⊢ ran  ( 𝑧  ∈  𝑎  ↦  ( ( 𝑐  +  𝑧 )  −  𝑐 ) )  ∈  V | 
						
							| 89 | 86 7 88 | ovmpoa | ⊢ ( ( 𝑐  ∈  𝑋  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  →  ( 𝑐  ⊕  𝑎 )  =  ran  ( 𝑧  ∈  𝑎  ↦  ( ( 𝑐  +  𝑧 )  −  𝑐 ) ) ) | 
						
							| 90 | 79 80 89 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  ( 𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  ( 𝑐  ⊕  𝑎 )  =  ran  ( 𝑧  ∈  𝑎  ↦  ( ( 𝑐  +  𝑧 )  −  𝑐 ) ) ) | 
						
							| 91 |  | eqid | ⊢ ( 𝑧  ∈  𝑎  ↦  ( ( 𝑐  +  𝑧 )  −  𝑐 ) )  =  ( 𝑧  ∈  𝑎  ↦  ( ( 𝑐  +  𝑧 )  −  𝑐 ) ) | 
						
							| 92 | 91 | rnmpt | ⊢ ran  ( 𝑧  ∈  𝑎  ↦  ( ( 𝑐  +  𝑧 )  −  𝑐 ) )  =  { 𝑣  ∣  ∃ 𝑧  ∈  𝑎 𝑣  =  ( ( 𝑐  +  𝑧 )  −  𝑐 ) } | 
						
							| 93 | 90 92 | eqtrdi | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  ( 𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  ( 𝑐  ⊕  𝑎 )  =  { 𝑣  ∣  ∃ 𝑧  ∈  𝑎 𝑣  =  ( ( 𝑐  +  𝑧 )  −  𝑐 ) } ) | 
						
							| 94 | 93 | rexeqdv | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  ( 𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  ( ∃ 𝑤  ∈  ( 𝑐  ⊕  𝑎 ) 𝑢  =  ( ( 𝑏  +  𝑤 )  −  𝑏 )  ↔  ∃ 𝑤  ∈  { 𝑣  ∣  ∃ 𝑧  ∈  𝑎 𝑣  =  ( ( 𝑐  +  𝑧 )  −  𝑐 ) } 𝑢  =  ( ( 𝑏  +  𝑤 )  −  𝑏 ) ) ) | 
						
							| 95 | 94 | abbidv | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  ( 𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  { 𝑢  ∣  ∃ 𝑤  ∈  ( 𝑐  ⊕  𝑎 ) 𝑢  =  ( ( 𝑏  +  𝑤 )  −  𝑏 ) }  =  { 𝑢  ∣  ∃ 𝑤  ∈  { 𝑣  ∣  ∃ 𝑧  ∈  𝑎 𝑣  =  ( ( 𝑐  +  𝑧 )  −  𝑐 ) } 𝑢  =  ( ( 𝑏  +  𝑤 )  −  𝑏 ) } ) | 
						
							| 96 | 40 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  ( 𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  𝐺  ∈  Grp ) | 
						
							| 97 | 96 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  ( 𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  ∧  𝑧  ∈  𝑎 )  →  𝐺  ∈  Grp ) | 
						
							| 98 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  ( 𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  𝑏  ∈  𝑋 ) | 
						
							| 99 | 1 5 | grpcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 )  →  ( 𝑏  +  𝑐 )  ∈  𝑋 ) | 
						
							| 100 | 96 98 79 99 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  ( 𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  ( 𝑏  +  𝑐 )  ∈  𝑋 ) | 
						
							| 101 | 100 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  ( 𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  ∧  𝑧  ∈  𝑎 )  →  ( 𝑏  +  𝑐 )  ∈  𝑋 ) | 
						
							| 102 | 61 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  ( 𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  ∧  𝑧  ∈  𝑎 )  →  𝑧  ∈  𝑋 ) | 
						
							| 103 | 1 5 | grpcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑏  +  𝑐 )  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  →  ( ( 𝑏  +  𝑐 )  +  𝑧 )  ∈  𝑋 ) | 
						
							| 104 | 97 101 102 103 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  ( 𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  ∧  𝑧  ∈  𝑎 )  →  ( ( 𝑏  +  𝑐 )  +  𝑧 )  ∈  𝑋 ) | 
						
							| 105 | 79 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  ( 𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  ∧  𝑧  ∈  𝑎 )  →  𝑐  ∈  𝑋 ) | 
						
							| 106 | 98 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  ( 𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  ∧  𝑧  ∈  𝑎 )  →  𝑏  ∈  𝑋 ) | 
						
							| 107 | 1 5 6 | grpsubsub4 | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ( ( 𝑏  +  𝑐 )  +  𝑧 )  ∈  𝑋  ∧  𝑐  ∈  𝑋  ∧  𝑏  ∈  𝑋 ) )  →  ( ( ( ( 𝑏  +  𝑐 )  +  𝑧 )  −  𝑐 )  −  𝑏 )  =  ( ( ( 𝑏  +  𝑐 )  +  𝑧 )  −  ( 𝑏  +  𝑐 ) ) ) | 
						
							| 108 | 97 104 105 106 107 | syl13anc | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  ( 𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  ∧  𝑧  ∈  𝑎 )  →  ( ( ( ( 𝑏  +  𝑐 )  +  𝑧 )  −  𝑐 )  −  𝑏 )  =  ( ( ( 𝑏  +  𝑐 )  +  𝑧 )  −  ( 𝑏  +  𝑐 ) ) ) | 
						
							| 109 | 1 5 | grpass | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( ( 𝑏  +  𝑐 )  +  𝑧 )  =  ( 𝑏  +  ( 𝑐  +  𝑧 ) ) ) | 
						
							| 110 | 97 106 105 102 109 | syl13anc | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  ( 𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  ∧  𝑧  ∈  𝑎 )  →  ( ( 𝑏  +  𝑐 )  +  𝑧 )  =  ( 𝑏  +  ( 𝑐  +  𝑧 ) ) ) | 
						
							| 111 | 110 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  ( 𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  ∧  𝑧  ∈  𝑎 )  →  ( ( ( 𝑏  +  𝑐 )  +  𝑧 )  −  𝑐 )  =  ( ( 𝑏  +  ( 𝑐  +  𝑧 ) )  −  𝑐 ) ) | 
						
							| 112 | 1 5 | grpcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑐  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  →  ( 𝑐  +  𝑧 )  ∈  𝑋 ) | 
						
							| 113 | 97 105 102 112 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  ( 𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  ∧  𝑧  ∈  𝑎 )  →  ( 𝑐  +  𝑧 )  ∈  𝑋 ) | 
						
							| 114 | 1 5 6 | grpaddsubass | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑏  ∈  𝑋  ∧  ( 𝑐  +  𝑧 )  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  ( ( 𝑏  +  ( 𝑐  +  𝑧 ) )  −  𝑐 )  =  ( 𝑏  +  ( ( 𝑐  +  𝑧 )  −  𝑐 ) ) ) | 
						
							| 115 | 97 106 113 105 114 | syl13anc | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  ( 𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  ∧  𝑧  ∈  𝑎 )  →  ( ( 𝑏  +  ( 𝑐  +  𝑧 ) )  −  𝑐 )  =  ( 𝑏  +  ( ( 𝑐  +  𝑧 )  −  𝑐 ) ) ) | 
						
							| 116 | 111 115 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  ( 𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  ∧  𝑧  ∈  𝑎 )  →  ( ( ( 𝑏  +  𝑐 )  +  𝑧 )  −  𝑐 )  =  ( 𝑏  +  ( ( 𝑐  +  𝑧 )  −  𝑐 ) ) ) | 
						
							| 117 | 116 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  ( 𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  ∧  𝑧  ∈  𝑎 )  →  ( ( ( ( 𝑏  +  𝑐 )  +  𝑧 )  −  𝑐 )  −  𝑏 )  =  ( ( 𝑏  +  ( ( 𝑐  +  𝑧 )  −  𝑐 ) )  −  𝑏 ) ) | 
						
							| 118 | 108 117 | eqtr3d | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  ( 𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  ∧  𝑧  ∈  𝑎 )  →  ( ( ( 𝑏  +  𝑐 )  +  𝑧 )  −  ( 𝑏  +  𝑐 ) )  =  ( ( 𝑏  +  ( ( 𝑐  +  𝑧 )  −  𝑐 ) )  −  𝑏 ) ) | 
						
							| 119 | 118 | eqeq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  ( 𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  ∧  𝑧  ∈  𝑎 )  →  ( 𝑢  =  ( ( ( 𝑏  +  𝑐 )  +  𝑧 )  −  ( 𝑏  +  𝑐 ) )  ↔  𝑢  =  ( ( 𝑏  +  ( ( 𝑐  +  𝑧 )  −  𝑐 ) )  −  𝑏 ) ) ) | 
						
							| 120 | 119 | rexbidva | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  ( 𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  ( ∃ 𝑧  ∈  𝑎 𝑢  =  ( ( ( 𝑏  +  𝑐 )  +  𝑧 )  −  ( 𝑏  +  𝑐 ) )  ↔  ∃ 𝑧  ∈  𝑎 𝑢  =  ( ( 𝑏  +  ( ( 𝑐  +  𝑧 )  −  𝑐 ) )  −  𝑏 ) ) ) | 
						
							| 121 | 120 | abbidv | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  ( 𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  { 𝑢  ∣  ∃ 𝑧  ∈  𝑎 𝑢  =  ( ( ( 𝑏  +  𝑐 )  +  𝑧 )  −  ( 𝑏  +  𝑐 ) ) }  =  { 𝑢  ∣  ∃ 𝑧  ∈  𝑎 𝑢  =  ( ( 𝑏  +  ( ( 𝑐  +  𝑧 )  −  𝑐 ) )  −  𝑏 ) } ) | 
						
							| 122 | 78 95 121 | 3eqtr4a | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  ( 𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  { 𝑢  ∣  ∃ 𝑤  ∈  ( 𝑐  ⊕  𝑎 ) 𝑢  =  ( ( 𝑏  +  𝑤 )  −  𝑏 ) }  =  { 𝑢  ∣  ∃ 𝑧  ∈  𝑎 𝑢  =  ( ( ( 𝑏  +  𝑐 )  +  𝑧 )  −  ( 𝑏  +  𝑐 ) ) } ) | 
						
							| 123 |  | eqid | ⊢ ( 𝑤  ∈  ( 𝑐  ⊕  𝑎 )  ↦  ( ( 𝑏  +  𝑤 )  −  𝑏 ) )  =  ( 𝑤  ∈  ( 𝑐  ⊕  𝑎 )  ↦  ( ( 𝑏  +  𝑤 )  −  𝑏 ) ) | 
						
							| 124 | 123 | rnmpt | ⊢ ran  ( 𝑤  ∈  ( 𝑐  ⊕  𝑎 )  ↦  ( ( 𝑏  +  𝑤 )  −  𝑏 ) )  =  { 𝑢  ∣  ∃ 𝑤  ∈  ( 𝑐  ⊕  𝑎 ) 𝑢  =  ( ( 𝑏  +  𝑤 )  −  𝑏 ) } | 
						
							| 125 |  | eqid | ⊢ ( 𝑧  ∈  𝑎  ↦  ( ( ( 𝑏  +  𝑐 )  +  𝑧 )  −  ( 𝑏  +  𝑐 ) ) )  =  ( 𝑧  ∈  𝑎  ↦  ( ( ( 𝑏  +  𝑐 )  +  𝑧 )  −  ( 𝑏  +  𝑐 ) ) ) | 
						
							| 126 | 125 | rnmpt | ⊢ ran  ( 𝑧  ∈  𝑎  ↦  ( ( ( 𝑏  +  𝑐 )  +  𝑧 )  −  ( 𝑏  +  𝑐 ) ) )  =  { 𝑢  ∣  ∃ 𝑧  ∈  𝑎 𝑢  =  ( ( ( 𝑏  +  𝑐 )  +  𝑧 )  −  ( 𝑏  +  𝑐 ) ) } | 
						
							| 127 | 122 124 126 | 3eqtr4g | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  ( 𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  ran  ( 𝑤  ∈  ( 𝑐  ⊕  𝑎 )  ↦  ( ( 𝑏  +  𝑤 )  −  𝑏 ) )  =  ran  ( 𝑧  ∈  𝑎  ↦  ( ( ( 𝑏  +  𝑐 )  +  𝑧 )  −  ( 𝑏  +  𝑐 ) ) ) ) | 
						
							| 128 | 39 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  ( 𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →   ⊕  : ( 𝑋  ×  ( 𝑃  pSyl  𝐺 ) ) ⟶ ( 𝑃  pSyl  𝐺 ) ) | 
						
							| 129 | 128 79 80 | fovcdmd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  ( 𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  ( 𝑐  ⊕  𝑎 )  ∈  ( 𝑃  pSyl  𝐺 ) ) | 
						
							| 130 |  | simpr | ⊢ ( ( 𝑥  =  𝑏  ∧  𝑦  =  ( 𝑐  ⊕  𝑎 ) )  →  𝑦  =  ( 𝑐  ⊕  𝑎 ) ) | 
						
							| 131 |  | simpl | ⊢ ( ( 𝑥  =  𝑏  ∧  𝑦  =  ( 𝑐  ⊕  𝑎 ) )  →  𝑥  =  𝑏 ) | 
						
							| 132 | 131 | oveq1d | ⊢ ( ( 𝑥  =  𝑏  ∧  𝑦  =  ( 𝑐  ⊕  𝑎 ) )  →  ( 𝑥  +  𝑧 )  =  ( 𝑏  +  𝑧 ) ) | 
						
							| 133 | 132 131 | oveq12d | ⊢ ( ( 𝑥  =  𝑏  ∧  𝑦  =  ( 𝑐  ⊕  𝑎 ) )  →  ( ( 𝑥  +  𝑧 )  −  𝑥 )  =  ( ( 𝑏  +  𝑧 )  −  𝑏 ) ) | 
						
							| 134 | 130 133 | mpteq12dv | ⊢ ( ( 𝑥  =  𝑏  ∧  𝑦  =  ( 𝑐  ⊕  𝑎 ) )  →  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) )  =  ( 𝑧  ∈  ( 𝑐  ⊕  𝑎 )  ↦  ( ( 𝑏  +  𝑧 )  −  𝑏 ) ) ) | 
						
							| 135 |  | oveq2 | ⊢ ( 𝑧  =  𝑤  →  ( 𝑏  +  𝑧 )  =  ( 𝑏  +  𝑤 ) ) | 
						
							| 136 | 135 | oveq1d | ⊢ ( 𝑧  =  𝑤  →  ( ( 𝑏  +  𝑧 )  −  𝑏 )  =  ( ( 𝑏  +  𝑤 )  −  𝑏 ) ) | 
						
							| 137 | 136 | cbvmptv | ⊢ ( 𝑧  ∈  ( 𝑐  ⊕  𝑎 )  ↦  ( ( 𝑏  +  𝑧 )  −  𝑏 ) )  =  ( 𝑤  ∈  ( 𝑐  ⊕  𝑎 )  ↦  ( ( 𝑏  +  𝑤 )  −  𝑏 ) ) | 
						
							| 138 | 134 137 | eqtrdi | ⊢ ( ( 𝑥  =  𝑏  ∧  𝑦  =  ( 𝑐  ⊕  𝑎 ) )  →  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) )  =  ( 𝑤  ∈  ( 𝑐  ⊕  𝑎 )  ↦  ( ( 𝑏  +  𝑤 )  −  𝑏 ) ) ) | 
						
							| 139 | 138 | rneqd | ⊢ ( ( 𝑥  =  𝑏  ∧  𝑦  =  ( 𝑐  ⊕  𝑎 ) )  →  ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) )  =  ran  ( 𝑤  ∈  ( 𝑐  ⊕  𝑎 )  ↦  ( ( 𝑏  +  𝑤 )  −  𝑏 ) ) ) | 
						
							| 140 |  | ovex | ⊢ ( 𝑐  ⊕  𝑎 )  ∈  V | 
						
							| 141 | 140 | mptex | ⊢ ( 𝑤  ∈  ( 𝑐  ⊕  𝑎 )  ↦  ( ( 𝑏  +  𝑤 )  −  𝑏 ) )  ∈  V | 
						
							| 142 | 141 | rnex | ⊢ ran  ( 𝑤  ∈  ( 𝑐  ⊕  𝑎 )  ↦  ( ( 𝑏  +  𝑤 )  −  𝑏 ) )  ∈  V | 
						
							| 143 | 139 7 142 | ovmpoa | ⊢ ( ( 𝑏  ∈  𝑋  ∧  ( 𝑐  ⊕  𝑎 )  ∈  ( 𝑃  pSyl  𝐺 ) )  →  ( 𝑏  ⊕  ( 𝑐  ⊕  𝑎 ) )  =  ran  ( 𝑤  ∈  ( 𝑐  ⊕  𝑎 )  ↦  ( ( 𝑏  +  𝑤 )  −  𝑏 ) ) ) | 
						
							| 144 | 98 129 143 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  ( 𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  ( 𝑏  ⊕  ( 𝑐  ⊕  𝑎 ) )  =  ran  ( 𝑤  ∈  ( 𝑐  ⊕  𝑎 )  ↦  ( ( 𝑏  +  𝑤 )  −  𝑏 ) ) ) | 
						
							| 145 |  | simpr | ⊢ ( ( 𝑥  =  ( 𝑏  +  𝑐 )  ∧  𝑦  =  𝑎 )  →  𝑦  =  𝑎 ) | 
						
							| 146 |  | simpl | ⊢ ( ( 𝑥  =  ( 𝑏  +  𝑐 )  ∧  𝑦  =  𝑎 )  →  𝑥  =  ( 𝑏  +  𝑐 ) ) | 
						
							| 147 | 146 | oveq1d | ⊢ ( ( 𝑥  =  ( 𝑏  +  𝑐 )  ∧  𝑦  =  𝑎 )  →  ( 𝑥  +  𝑧 )  =  ( ( 𝑏  +  𝑐 )  +  𝑧 ) ) | 
						
							| 148 | 147 146 | oveq12d | ⊢ ( ( 𝑥  =  ( 𝑏  +  𝑐 )  ∧  𝑦  =  𝑎 )  →  ( ( 𝑥  +  𝑧 )  −  𝑥 )  =  ( ( ( 𝑏  +  𝑐 )  +  𝑧 )  −  ( 𝑏  +  𝑐 ) ) ) | 
						
							| 149 | 145 148 | mpteq12dv | ⊢ ( ( 𝑥  =  ( 𝑏  +  𝑐 )  ∧  𝑦  =  𝑎 )  →  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) )  =  ( 𝑧  ∈  𝑎  ↦  ( ( ( 𝑏  +  𝑐 )  +  𝑧 )  −  ( 𝑏  +  𝑐 ) ) ) ) | 
						
							| 150 | 149 | rneqd | ⊢ ( ( 𝑥  =  ( 𝑏  +  𝑐 )  ∧  𝑦  =  𝑎 )  →  ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) )  =  ran  ( 𝑧  ∈  𝑎  ↦  ( ( ( 𝑏  +  𝑐 )  +  𝑧 )  −  ( 𝑏  +  𝑐 ) ) ) ) | 
						
							| 151 | 51 | mptex | ⊢ ( 𝑧  ∈  𝑎  ↦  ( ( ( 𝑏  +  𝑐 )  +  𝑧 )  −  ( 𝑏  +  𝑐 ) ) )  ∈  V | 
						
							| 152 | 151 | rnex | ⊢ ran  ( 𝑧  ∈  𝑎  ↦  ( ( ( 𝑏  +  𝑐 )  +  𝑧 )  −  ( 𝑏  +  𝑐 ) ) )  ∈  V | 
						
							| 153 | 150 7 152 | ovmpoa | ⊢ ( ( ( 𝑏  +  𝑐 )  ∈  𝑋  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  →  ( ( 𝑏  +  𝑐 )  ⊕  𝑎 )  =  ran  ( 𝑧  ∈  𝑎  ↦  ( ( ( 𝑏  +  𝑐 )  +  𝑧 )  −  ( 𝑏  +  𝑐 ) ) ) ) | 
						
							| 154 | 100 80 153 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  ( 𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  ( ( 𝑏  +  𝑐 )  ⊕  𝑎 )  =  ran  ( 𝑧  ∈  𝑎  ↦  ( ( ( 𝑏  +  𝑐 )  +  𝑧 )  −  ( 𝑏  +  𝑐 ) ) ) ) | 
						
							| 155 | 127 144 154 | 3eqtr4rd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  ( 𝑏  ∈  𝑋  ∧  𝑐  ∈  𝑋 ) )  →  ( ( 𝑏  +  𝑐 )  ⊕  𝑎 )  =  ( 𝑏  ⊕  ( 𝑐  ⊕  𝑎 ) ) ) | 
						
							| 156 | 155 | ralrimivva | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  →  ∀ 𝑏  ∈  𝑋 ∀ 𝑐  ∈  𝑋 ( ( 𝑏  +  𝑐 )  ⊕  𝑎 )  =  ( 𝑏  ⊕  ( 𝑐  ⊕  𝑎 ) ) ) | 
						
							| 157 | 74 156 | jca | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  pSyl  𝐺 ) )  →  ( ( ( 0g ‘ 𝐺 )  ⊕  𝑎 )  =  𝑎  ∧  ∀ 𝑏  ∈  𝑋 ∀ 𝑐  ∈  𝑋 ( ( 𝑏  +  𝑐 )  ⊕  𝑎 )  =  ( 𝑏  ⊕  ( 𝑐  ⊕  𝑎 ) ) ) ) | 
						
							| 158 | 157 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  ( 𝑃  pSyl  𝐺 ) ( ( ( 0g ‘ 𝐺 )  ⊕  𝑎 )  =  𝑎  ∧  ∀ 𝑏  ∈  𝑋 ∀ 𝑐  ∈  𝑋 ( ( 𝑏  +  𝑐 )  ⊕  𝑎 )  =  ( 𝑏  ⊕  ( 𝑐  ⊕  𝑎 ) ) ) ) | 
						
							| 159 | 39 158 | jca | ⊢ ( 𝜑  →  (  ⊕  : ( 𝑋  ×  ( 𝑃  pSyl  𝐺 ) ) ⟶ ( 𝑃  pSyl  𝐺 )  ∧  ∀ 𝑎  ∈  ( 𝑃  pSyl  𝐺 ) ( ( ( 0g ‘ 𝐺 )  ⊕  𝑎 )  =  𝑎  ∧  ∀ 𝑏  ∈  𝑋 ∀ 𝑐  ∈  𝑋 ( ( 𝑏  +  𝑐 )  ⊕  𝑎 )  =  ( 𝑏  ⊕  ( 𝑐  ⊕  𝑎 ) ) ) ) ) | 
						
							| 160 | 1 5 41 | isga | ⊢ (  ⊕   ∈  ( 𝐺  GrpAct  ( 𝑃  pSyl  𝐺 ) )  ↔  ( ( 𝐺  ∈  Grp  ∧  ( 𝑃  pSyl  𝐺 )  ∈  V )  ∧  (  ⊕  : ( 𝑋  ×  ( 𝑃  pSyl  𝐺 ) ) ⟶ ( 𝑃  pSyl  𝐺 )  ∧  ∀ 𝑎  ∈  ( 𝑃  pSyl  𝐺 ) ( ( ( 0g ‘ 𝐺 )  ⊕  𝑎 )  =  𝑎  ∧  ∀ 𝑏  ∈  𝑋 ∀ 𝑐  ∈  𝑋 ( ( 𝑏  +  𝑐 )  ⊕  𝑎 )  =  ( 𝑏  ⊕  ( 𝑐  ⊕  𝑎 ) ) ) ) ) ) | 
						
							| 161 | 9 159 160 | sylanbrc | ⊢ ( 𝜑  →   ⊕   ∈  ( 𝐺  GrpAct  ( 𝑃  pSyl  𝐺 ) ) ) |