| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sylow3.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | sylow3.g | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 3 |  | sylow3.xf | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 4 |  | sylow3.p | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 5 |  | sylow3.n | ⊢ 𝑁  =  ( ♯ ‘ ( 𝑃  pSyl  𝐺 ) ) | 
						
							| 6 | 1 | slwn0 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  Fin  ∧  𝑃  ∈  ℙ )  →  ( 𝑃  pSyl  𝐺 )  ≠  ∅ ) | 
						
							| 7 | 2 3 4 6 | syl3anc | ⊢ ( 𝜑  →  ( 𝑃  pSyl  𝐺 )  ≠  ∅ ) | 
						
							| 8 |  | n0 | ⊢ ( ( 𝑃  pSyl  𝐺 )  ≠  ∅  ↔  ∃ 𝑘 𝑘  ∈  ( 𝑃  pSyl  𝐺 ) ) | 
						
							| 9 | 7 8 | sylib | ⊢ ( 𝜑  →  ∃ 𝑘 𝑘  ∈  ( 𝑃  pSyl  𝐺 ) ) | 
						
							| 10 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑃  pSyl  𝐺 ) )  →  𝐺  ∈  Grp ) | 
						
							| 11 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑃  pSyl  𝐺 ) )  →  𝑋  ∈  Fin ) | 
						
							| 12 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑃  pSyl  𝐺 ) )  →  𝑃  ∈  ℙ ) | 
						
							| 13 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 14 |  | eqid | ⊢ ( -g ‘ 𝐺 )  =  ( -g ‘ 𝐺 ) | 
						
							| 15 |  | oveq2 | ⊢ ( 𝑐  =  𝑧  →  ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 )  =  ( 𝑎 ( +g ‘ 𝐺 ) 𝑧 ) ) | 
						
							| 16 | 15 | oveq1d | ⊢ ( 𝑐  =  𝑧  →  ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ( -g ‘ 𝐺 ) 𝑎 )  =  ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑧 ) ( -g ‘ 𝐺 ) 𝑎 ) ) | 
						
							| 17 | 16 | cbvmptv | ⊢ ( 𝑐  ∈  𝑏  ↦  ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ( -g ‘ 𝐺 ) 𝑎 ) )  =  ( 𝑧  ∈  𝑏  ↦  ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑧 ) ( -g ‘ 𝐺 ) 𝑎 ) ) | 
						
							| 18 |  | oveq1 | ⊢ ( 𝑎  =  𝑥  →  ( 𝑎 ( +g ‘ 𝐺 ) 𝑧 )  =  ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ) | 
						
							| 19 |  | id | ⊢ ( 𝑎  =  𝑥  →  𝑎  =  𝑥 ) | 
						
							| 20 | 18 19 | oveq12d | ⊢ ( 𝑎  =  𝑥  →  ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑧 ) ( -g ‘ 𝐺 ) 𝑎 )  =  ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ( -g ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 21 | 20 | mpteq2dv | ⊢ ( 𝑎  =  𝑥  →  ( 𝑧  ∈  𝑏  ↦  ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑧 ) ( -g ‘ 𝐺 ) 𝑎 ) )  =  ( 𝑧  ∈  𝑏  ↦  ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ( -g ‘ 𝐺 ) 𝑥 ) ) ) | 
						
							| 22 | 17 21 | eqtrid | ⊢ ( 𝑎  =  𝑥  →  ( 𝑐  ∈  𝑏  ↦  ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ( -g ‘ 𝐺 ) 𝑎 ) )  =  ( 𝑧  ∈  𝑏  ↦  ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ( -g ‘ 𝐺 ) 𝑥 ) ) ) | 
						
							| 23 | 22 | rneqd | ⊢ ( 𝑎  =  𝑥  →  ran  ( 𝑐  ∈  𝑏  ↦  ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ( -g ‘ 𝐺 ) 𝑎 ) )  =  ran  ( 𝑧  ∈  𝑏  ↦  ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ( -g ‘ 𝐺 ) 𝑥 ) ) ) | 
						
							| 24 |  | mpteq1 | ⊢ ( 𝑏  =  𝑦  →  ( 𝑧  ∈  𝑏  ↦  ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ( -g ‘ 𝐺 ) 𝑥 ) )  =  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ( -g ‘ 𝐺 ) 𝑥 ) ) ) | 
						
							| 25 | 24 | rneqd | ⊢ ( 𝑏  =  𝑦  →  ran  ( 𝑧  ∈  𝑏  ↦  ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ( -g ‘ 𝐺 ) 𝑥 ) )  =  ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ( -g ‘ 𝐺 ) 𝑥 ) ) ) | 
						
							| 26 | 23 25 | cbvmpov | ⊢ ( 𝑎  ∈  𝑋 ,  𝑏  ∈  ( 𝑃  pSyl  𝐺 )  ↦  ran  ( 𝑐  ∈  𝑏  ↦  ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ( -g ‘ 𝐺 ) 𝑎 ) ) )  =  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  ( 𝑃  pSyl  𝐺 )  ↦  ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ( -g ‘ 𝐺 ) 𝑥 ) ) ) | 
						
							| 27 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑃  pSyl  𝐺 ) )  →  𝑘  ∈  ( 𝑃  pSyl  𝐺 ) ) | 
						
							| 28 |  | eqid | ⊢ { 𝑢  ∈  𝑋  ∣  ( 𝑢 ( 𝑎  ∈  𝑋 ,  𝑏  ∈  ( 𝑃  pSyl  𝐺 )  ↦  ran  ( 𝑐  ∈  𝑏  ↦  ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ( -g ‘ 𝐺 ) 𝑎 ) ) ) 𝑘 )  =  𝑘 }  =  { 𝑢  ∈  𝑋  ∣  ( 𝑢 ( 𝑎  ∈  𝑋 ,  𝑏  ∈  ( 𝑃  pSyl  𝐺 )  ↦  ran  ( 𝑐  ∈  𝑏  ↦  ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ( -g ‘ 𝐺 ) 𝑎 ) ) ) 𝑘 )  =  𝑘 } | 
						
							| 29 |  | eqid | ⊢ { 𝑥  ∈  𝑋  ∣  ∀ 𝑦  ∈  𝑋 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ∈  𝑘  ↔  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 )  ∈  𝑘 ) }  =  { 𝑥  ∈  𝑋  ∣  ∀ 𝑦  ∈  𝑋 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ∈  𝑘  ↔  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 )  ∈  𝑘 ) } | 
						
							| 30 | 1 10 11 12 13 14 26 27 28 29 | sylow3lem4 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑃  pSyl  𝐺 ) )  →  ( ♯ ‘ ( 𝑃  pSyl  𝐺 ) )  ∥  ( ( ♯ ‘ 𝑋 )  /  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) ) | 
						
							| 31 | 5 30 | eqbrtrid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑃  pSyl  𝐺 ) )  →  𝑁  ∥  ( ( ♯ ‘ 𝑋 )  /  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) ) ) | 
						
							| 32 | 5 | oveq1i | ⊢ ( 𝑁  mod  𝑃 )  =  ( ( ♯ ‘ ( 𝑃  pSyl  𝐺 ) )  mod  𝑃 ) | 
						
							| 33 | 23 25 | cbvmpov | ⊢ ( 𝑎  ∈  𝑘 ,  𝑏  ∈  ( 𝑃  pSyl  𝐺 )  ↦  ran  ( 𝑐  ∈  𝑏  ↦  ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ( -g ‘ 𝐺 ) 𝑎 ) ) )  =  ( 𝑥  ∈  𝑘 ,  𝑦  ∈  ( 𝑃  pSyl  𝐺 )  ↦  ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑧 ) ( -g ‘ 𝐺 ) 𝑥 ) ) ) | 
						
							| 34 |  | eqid | ⊢ { 𝑥  ∈  𝑋  ∣  ∀ 𝑦  ∈  𝑋 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ∈  𝑠  ↔  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 )  ∈  𝑠 ) }  =  { 𝑥  ∈  𝑋  ∣  ∀ 𝑦  ∈  𝑋 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ∈  𝑠  ↔  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 )  ∈  𝑠 ) } | 
						
							| 35 | 1 10 11 12 13 14 27 33 34 | sylow3lem6 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑃  pSyl  𝐺 ) )  →  ( ( ♯ ‘ ( 𝑃  pSyl  𝐺 ) )  mod  𝑃 )  =  1 ) | 
						
							| 36 | 32 35 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑃  pSyl  𝐺 ) )  →  ( 𝑁  mod  𝑃 )  =  1 ) | 
						
							| 37 | 31 36 | jca | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑃  pSyl  𝐺 ) )  →  ( 𝑁  ∥  ( ( ♯ ‘ 𝑋 )  /  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) )  ∧  ( 𝑁  mod  𝑃 )  =  1 ) ) | 
						
							| 38 | 9 37 | exlimddv | ⊢ ( 𝜑  →  ( 𝑁  ∥  ( ( ♯ ‘ 𝑋 )  /  ( 𝑃 ↑ ( 𝑃  pCnt  ( ♯ ‘ 𝑋 ) ) ) )  ∧  ( 𝑁  mod  𝑃 )  =  1 ) ) |