| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sylow3.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | sylow3.g | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 3 |  | sylow3.xf | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 4 |  | sylow3.p | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 5 |  | sylow3lem5.a | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 6 |  | sylow3lem5.d | ⊢  −   =  ( -g ‘ 𝐺 ) | 
						
							| 7 |  | sylow3lem5.k | ⊢ ( 𝜑  →  𝐾  ∈  ( 𝑃  pSyl  𝐺 ) ) | 
						
							| 8 |  | sylow3lem5.m | ⊢  ⊕   =  ( 𝑥  ∈  𝐾 ,  𝑦  ∈  ( 𝑃  pSyl  𝐺 )  ↦  ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) ) ) | 
						
							| 9 |  | sylow3lem6.n | ⊢ 𝑁  =  { 𝑥  ∈  𝑋  ∣  ∀ 𝑦  ∈  𝑋 ( ( 𝑥  +  𝑦 )  ∈  𝑠  ↔  ( 𝑦  +  𝑥 )  ∈  𝑠 ) } | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ ( 𝐺  ↾s  𝐾 ) )  =  ( Base ‘ ( 𝐺  ↾s  𝐾 ) ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 | sylow3lem5 | ⊢ ( 𝜑  →   ⊕   ∈  ( ( 𝐺  ↾s  𝐾 )  GrpAct  ( 𝑃  pSyl  𝐺 ) ) ) | 
						
							| 12 |  | eqid | ⊢ ( 𝐺  ↾s  𝐾 )  =  ( 𝐺  ↾s  𝐾 ) | 
						
							| 13 | 12 | slwpgp | ⊢ ( 𝐾  ∈  ( 𝑃  pSyl  𝐺 )  →  𝑃  pGrp  ( 𝐺  ↾s  𝐾 ) ) | 
						
							| 14 | 7 13 | syl | ⊢ ( 𝜑  →  𝑃  pGrp  ( 𝐺  ↾s  𝐾 ) ) | 
						
							| 15 |  | slwsubg | ⊢ ( 𝐾  ∈  ( 𝑃  pSyl  𝐺 )  →  𝐾  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 16 | 7 15 | syl | ⊢ ( 𝜑  →  𝐾  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 17 | 12 | subgbas | ⊢ ( 𝐾  ∈  ( SubGrp ‘ 𝐺 )  →  𝐾  =  ( Base ‘ ( 𝐺  ↾s  𝐾 ) ) ) | 
						
							| 18 | 16 17 | syl | ⊢ ( 𝜑  →  𝐾  =  ( Base ‘ ( 𝐺  ↾s  𝐾 ) ) ) | 
						
							| 19 | 1 | subgss | ⊢ ( 𝐾  ∈  ( SubGrp ‘ 𝐺 )  →  𝐾  ⊆  𝑋 ) | 
						
							| 20 | 16 19 | syl | ⊢ ( 𝜑  →  𝐾  ⊆  𝑋 ) | 
						
							| 21 | 3 20 | ssfid | ⊢ ( 𝜑  →  𝐾  ∈  Fin ) | 
						
							| 22 | 18 21 | eqeltrrd | ⊢ ( 𝜑  →  ( Base ‘ ( 𝐺  ↾s  𝐾 ) )  ∈  Fin ) | 
						
							| 23 |  | pwfi | ⊢ ( 𝑋  ∈  Fin  ↔  𝒫  𝑋  ∈  Fin ) | 
						
							| 24 | 3 23 | sylib | ⊢ ( 𝜑  →  𝒫  𝑋  ∈  Fin ) | 
						
							| 25 |  | slwsubg | ⊢ ( 𝑥  ∈  ( 𝑃  pSyl  𝐺 )  →  𝑥  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 26 | 1 | subgss | ⊢ ( 𝑥  ∈  ( SubGrp ‘ 𝐺 )  →  𝑥  ⊆  𝑋 ) | 
						
							| 27 | 25 26 | syl | ⊢ ( 𝑥  ∈  ( 𝑃  pSyl  𝐺 )  →  𝑥  ⊆  𝑋 ) | 
						
							| 28 | 25 27 | elpwd | ⊢ ( 𝑥  ∈  ( 𝑃  pSyl  𝐺 )  →  𝑥  ∈  𝒫  𝑋 ) | 
						
							| 29 | 28 | ssriv | ⊢ ( 𝑃  pSyl  𝐺 )  ⊆  𝒫  𝑋 | 
						
							| 30 |  | ssfi | ⊢ ( ( 𝒫  𝑋  ∈  Fin  ∧  ( 𝑃  pSyl  𝐺 )  ⊆  𝒫  𝑋 )  →  ( 𝑃  pSyl  𝐺 )  ∈  Fin ) | 
						
							| 31 | 24 29 30 | sylancl | ⊢ ( 𝜑  →  ( 𝑃  pSyl  𝐺 )  ∈  Fin ) | 
						
							| 32 |  | eqid | ⊢ { 𝑠  ∈  ( 𝑃  pSyl  𝐺 )  ∣  ∀ 𝑔  ∈  ( Base ‘ ( 𝐺  ↾s  𝐾 ) ) ( 𝑔  ⊕  𝑠 )  =  𝑠 }  =  { 𝑠  ∈  ( 𝑃  pSyl  𝐺 )  ∣  ∀ 𝑔  ∈  ( Base ‘ ( 𝐺  ↾s  𝐾 ) ) ( 𝑔  ⊕  𝑠 )  =  𝑠 } | 
						
							| 33 |  | eqid | ⊢ { 〈 𝑧 ,  𝑤 〉  ∣  ( { 𝑧 ,  𝑤 }  ⊆  ( 𝑃  pSyl  𝐺 )  ∧  ∃ ℎ  ∈  ( Base ‘ ( 𝐺  ↾s  𝐾 ) ) ( ℎ  ⊕  𝑧 )  =  𝑤 ) }  =  { 〈 𝑧 ,  𝑤 〉  ∣  ( { 𝑧 ,  𝑤 }  ⊆  ( 𝑃  pSyl  𝐺 )  ∧  ∃ ℎ  ∈  ( Base ‘ ( 𝐺  ↾s  𝐾 ) ) ( ℎ  ⊕  𝑧 )  =  𝑤 ) } | 
						
							| 34 | 10 11 14 22 31 32 33 | sylow2a | ⊢ ( 𝜑  →  𝑃  ∥  ( ( ♯ ‘ ( 𝑃  pSyl  𝐺 ) )  −  ( ♯ ‘ { 𝑠  ∈  ( 𝑃  pSyl  𝐺 )  ∣  ∀ 𝑔  ∈  ( Base ‘ ( 𝐺  ↾s  𝐾 ) ) ( 𝑔  ⊕  𝑠 )  =  𝑠 } ) ) ) | 
						
							| 35 |  | eqcom | ⊢ ( ran  ( 𝑧  ∈  𝑠  ↦  ( ( 𝑔  +  𝑧 )  −  𝑔 ) )  =  𝑠  ↔  𝑠  =  ran  ( 𝑧  ∈  𝑠  ↦  ( ( 𝑔  +  𝑧 )  −  𝑔 ) ) ) | 
						
							| 36 | 20 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  →  𝐾  ⊆  𝑋 ) | 
						
							| 37 | 36 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝑔  ∈  𝐾 )  →  𝑔  ∈  𝑋 ) | 
						
							| 38 | 37 | biantrurd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝑔  ∈  𝐾 )  →  ( 𝑠  =  ran  ( 𝑧  ∈  𝑠  ↦  ( ( 𝑔  +  𝑧 )  −  𝑔 ) )  ↔  ( 𝑔  ∈  𝑋  ∧  𝑠  =  ran  ( 𝑧  ∈  𝑠  ↦  ( ( 𝑔  +  𝑧 )  −  𝑔 ) ) ) ) ) | 
						
							| 39 | 35 38 | bitrid | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝑔  ∈  𝐾 )  →  ( ran  ( 𝑧  ∈  𝑠  ↦  ( ( 𝑔  +  𝑧 )  −  𝑔 ) )  =  𝑠  ↔  ( 𝑔  ∈  𝑋  ∧  𝑠  =  ran  ( 𝑧  ∈  𝑠  ↦  ( ( 𝑔  +  𝑧 )  −  𝑔 ) ) ) ) ) | 
						
							| 40 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝑔  ∈  𝐾 )  →  𝑔  ∈  𝐾 ) | 
						
							| 41 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝑔  ∈  𝐾 )  →  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) ) | 
						
							| 42 |  | simpr | ⊢ ( ( 𝑥  =  𝑔  ∧  𝑦  =  𝑠 )  →  𝑦  =  𝑠 ) | 
						
							| 43 |  | simpl | ⊢ ( ( 𝑥  =  𝑔  ∧  𝑦  =  𝑠 )  →  𝑥  =  𝑔 ) | 
						
							| 44 | 43 | oveq1d | ⊢ ( ( 𝑥  =  𝑔  ∧  𝑦  =  𝑠 )  →  ( 𝑥  +  𝑧 )  =  ( 𝑔  +  𝑧 ) ) | 
						
							| 45 | 44 43 | oveq12d | ⊢ ( ( 𝑥  =  𝑔  ∧  𝑦  =  𝑠 )  →  ( ( 𝑥  +  𝑧 )  −  𝑥 )  =  ( ( 𝑔  +  𝑧 )  −  𝑔 ) ) | 
						
							| 46 | 42 45 | mpteq12dv | ⊢ ( ( 𝑥  =  𝑔  ∧  𝑦  =  𝑠 )  →  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) )  =  ( 𝑧  ∈  𝑠  ↦  ( ( 𝑔  +  𝑧 )  −  𝑔 ) ) ) | 
						
							| 47 | 46 | rneqd | ⊢ ( ( 𝑥  =  𝑔  ∧  𝑦  =  𝑠 )  →  ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) )  =  ran  ( 𝑧  ∈  𝑠  ↦  ( ( 𝑔  +  𝑧 )  −  𝑔 ) ) ) | 
						
							| 48 |  | vex | ⊢ 𝑠  ∈  V | 
						
							| 49 | 48 | mptex | ⊢ ( 𝑧  ∈  𝑠  ↦  ( ( 𝑔  +  𝑧 )  −  𝑔 ) )  ∈  V | 
						
							| 50 | 49 | rnex | ⊢ ran  ( 𝑧  ∈  𝑠  ↦  ( ( 𝑔  +  𝑧 )  −  𝑔 ) )  ∈  V | 
						
							| 51 | 47 8 50 | ovmpoa | ⊢ ( ( 𝑔  ∈  𝐾  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  →  ( 𝑔  ⊕  𝑠 )  =  ran  ( 𝑧  ∈  𝑠  ↦  ( ( 𝑔  +  𝑧 )  −  𝑔 ) ) ) | 
						
							| 52 | 40 41 51 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝑔  ∈  𝐾 )  →  ( 𝑔  ⊕  𝑠 )  =  ran  ( 𝑧  ∈  𝑠  ↦  ( ( 𝑔  +  𝑧 )  −  𝑔 ) ) ) | 
						
							| 53 | 52 | eqeq1d | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝑔  ∈  𝐾 )  →  ( ( 𝑔  ⊕  𝑠 )  =  𝑠  ↔  ran  ( 𝑧  ∈  𝑠  ↦  ( ( 𝑔  +  𝑧 )  −  𝑔 ) )  =  𝑠 ) ) | 
						
							| 54 |  | slwsubg | ⊢ ( 𝑠  ∈  ( 𝑃  pSyl  𝐺 )  →  𝑠  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 55 | 54 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝑔  ∈  𝐾 )  →  𝑠  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 56 |  | eqid | ⊢ ( 𝑧  ∈  𝑠  ↦  ( ( 𝑔  +  𝑧 )  −  𝑔 ) )  =  ( 𝑧  ∈  𝑠  ↦  ( ( 𝑔  +  𝑧 )  −  𝑔 ) ) | 
						
							| 57 | 1 5 6 56 9 | conjnmzb | ⊢ ( 𝑠  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝑔  ∈  𝑁  ↔  ( 𝑔  ∈  𝑋  ∧  𝑠  =  ran  ( 𝑧  ∈  𝑠  ↦  ( ( 𝑔  +  𝑧 )  −  𝑔 ) ) ) ) ) | 
						
							| 58 | 55 57 | syl | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝑔  ∈  𝐾 )  →  ( 𝑔  ∈  𝑁  ↔  ( 𝑔  ∈  𝑋  ∧  𝑠  =  ran  ( 𝑧  ∈  𝑠  ↦  ( ( 𝑔  +  𝑧 )  −  𝑔 ) ) ) ) ) | 
						
							| 59 | 39 53 58 | 3bitr4d | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝑔  ∈  𝐾 )  →  ( ( 𝑔  ⊕  𝑠 )  =  𝑠  ↔  𝑔  ∈  𝑁 ) ) | 
						
							| 60 | 59 | ralbidva | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  →  ( ∀ 𝑔  ∈  𝐾 ( 𝑔  ⊕  𝑠 )  =  𝑠  ↔  ∀ 𝑔  ∈  𝐾 𝑔  ∈  𝑁 ) ) | 
						
							| 61 |  | dfss3 | ⊢ ( 𝐾  ⊆  𝑁  ↔  ∀ 𝑔  ∈  𝐾 𝑔  ∈  𝑁 ) | 
						
							| 62 | 60 61 | bitr4di | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  →  ( ∀ 𝑔  ∈  𝐾 ( 𝑔  ⊕  𝑠 )  =  𝑠  ↔  𝐾  ⊆  𝑁 ) ) | 
						
							| 63 | 18 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  →  𝐾  =  ( Base ‘ ( 𝐺  ↾s  𝐾 ) ) ) | 
						
							| 64 | 63 | raleqdv | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  →  ( ∀ 𝑔  ∈  𝐾 ( 𝑔  ⊕  𝑠 )  =  𝑠  ↔  ∀ 𝑔  ∈  ( Base ‘ ( 𝐺  ↾s  𝐾 ) ) ( 𝑔  ⊕  𝑠 )  =  𝑠 ) ) | 
						
							| 65 |  | eqid | ⊢ ( Base ‘ ( 𝐺  ↾s  𝑁 ) )  =  ( Base ‘ ( 𝐺  ↾s  𝑁 ) ) | 
						
							| 66 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝐾  ⊆  𝑁 )  →  𝐺  ∈  Grp ) | 
						
							| 67 | 9 1 5 | nmzsubg | ⊢ ( 𝐺  ∈  Grp  →  𝑁  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 68 | 66 67 | syl | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝐾  ⊆  𝑁 )  →  𝑁  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 69 |  | eqid | ⊢ ( 𝐺  ↾s  𝑁 )  =  ( 𝐺  ↾s  𝑁 ) | 
						
							| 70 | 69 | subgbas | ⊢ ( 𝑁  ∈  ( SubGrp ‘ 𝐺 )  →  𝑁  =  ( Base ‘ ( 𝐺  ↾s  𝑁 ) ) ) | 
						
							| 71 | 68 70 | syl | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝐾  ⊆  𝑁 )  →  𝑁  =  ( Base ‘ ( 𝐺  ↾s  𝑁 ) ) ) | 
						
							| 72 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝐾  ⊆  𝑁 )  →  𝑋  ∈  Fin ) | 
						
							| 73 | 1 | subgss | ⊢ ( 𝑁  ∈  ( SubGrp ‘ 𝐺 )  →  𝑁  ⊆  𝑋 ) | 
						
							| 74 | 68 73 | syl | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝐾  ⊆  𝑁 )  →  𝑁  ⊆  𝑋 ) | 
						
							| 75 | 72 74 | ssfid | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝐾  ⊆  𝑁 )  →  𝑁  ∈  Fin ) | 
						
							| 76 | 71 75 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝐾  ⊆  𝑁 )  →  ( Base ‘ ( 𝐺  ↾s  𝑁 ) )  ∈  Fin ) | 
						
							| 77 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝐾  ⊆  𝑁 )  →  𝐾  ∈  ( 𝑃  pSyl  𝐺 ) ) | 
						
							| 78 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝐾  ⊆  𝑁 )  →  𝐾  ⊆  𝑁 ) | 
						
							| 79 | 69 | subgslw | ⊢ ( ( 𝑁  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ⊆  𝑁 )  →  𝐾  ∈  ( 𝑃  pSyl  ( 𝐺  ↾s  𝑁 ) ) ) | 
						
							| 80 | 68 77 78 79 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝐾  ⊆  𝑁 )  →  𝐾  ∈  ( 𝑃  pSyl  ( 𝐺  ↾s  𝑁 ) ) ) | 
						
							| 81 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝐾  ⊆  𝑁 )  →  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) ) | 
						
							| 82 | 54 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝐾  ⊆  𝑁 )  →  𝑠  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 83 | 9 1 5 | ssnmz | ⊢ ( 𝑠  ∈  ( SubGrp ‘ 𝐺 )  →  𝑠  ⊆  𝑁 ) | 
						
							| 84 | 82 83 | syl | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝐾  ⊆  𝑁 )  →  𝑠  ⊆  𝑁 ) | 
						
							| 85 | 69 | subgslw | ⊢ ( ( 𝑁  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝑠  ⊆  𝑁 )  →  𝑠  ∈  ( 𝑃  pSyl  ( 𝐺  ↾s  𝑁 ) ) ) | 
						
							| 86 | 68 81 84 85 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝐾  ⊆  𝑁 )  →  𝑠  ∈  ( 𝑃  pSyl  ( 𝐺  ↾s  𝑁 ) ) ) | 
						
							| 87 | 1 | fvexi | ⊢ 𝑋  ∈  V | 
						
							| 88 | 9 87 | rabex2 | ⊢ 𝑁  ∈  V | 
						
							| 89 | 69 5 | ressplusg | ⊢ ( 𝑁  ∈  V  →   +   =  ( +g ‘ ( 𝐺  ↾s  𝑁 ) ) ) | 
						
							| 90 | 88 89 | ax-mp | ⊢  +   =  ( +g ‘ ( 𝐺  ↾s  𝑁 ) ) | 
						
							| 91 |  | eqid | ⊢ ( -g ‘ ( 𝐺  ↾s  𝑁 ) )  =  ( -g ‘ ( 𝐺  ↾s  𝑁 ) ) | 
						
							| 92 | 65 76 80 86 90 91 | sylow2 | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝐾  ⊆  𝑁 )  →  ∃ 𝑔  ∈  ( Base ‘ ( 𝐺  ↾s  𝑁 ) ) 𝐾  =  ran  ( 𝑧  ∈  𝑠  ↦  ( ( 𝑔  +  𝑧 ) ( -g ‘ ( 𝐺  ↾s  𝑁 ) ) 𝑔 ) ) ) | 
						
							| 93 | 9 1 5 69 | nmznsg | ⊢ ( 𝑠  ∈  ( SubGrp ‘ 𝐺 )  →  𝑠  ∈  ( NrmSGrp ‘ ( 𝐺  ↾s  𝑁 ) ) ) | 
						
							| 94 | 82 93 | syl | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝐾  ⊆  𝑁 )  →  𝑠  ∈  ( NrmSGrp ‘ ( 𝐺  ↾s  𝑁 ) ) ) | 
						
							| 95 |  | eqid | ⊢ ( 𝑧  ∈  𝑠  ↦  ( ( 𝑔  +  𝑧 ) ( -g ‘ ( 𝐺  ↾s  𝑁 ) ) 𝑔 ) )  =  ( 𝑧  ∈  𝑠  ↦  ( ( 𝑔  +  𝑧 ) ( -g ‘ ( 𝐺  ↾s  𝑁 ) ) 𝑔 ) ) | 
						
							| 96 | 65 90 91 95 | conjnsg | ⊢ ( ( 𝑠  ∈  ( NrmSGrp ‘ ( 𝐺  ↾s  𝑁 ) )  ∧  𝑔  ∈  ( Base ‘ ( 𝐺  ↾s  𝑁 ) ) )  →  𝑠  =  ran  ( 𝑧  ∈  𝑠  ↦  ( ( 𝑔  +  𝑧 ) ( -g ‘ ( 𝐺  ↾s  𝑁 ) ) 𝑔 ) ) ) | 
						
							| 97 | 94 96 | sylan | ⊢ ( ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝐾  ⊆  𝑁 )  ∧  𝑔  ∈  ( Base ‘ ( 𝐺  ↾s  𝑁 ) ) )  →  𝑠  =  ran  ( 𝑧  ∈  𝑠  ↦  ( ( 𝑔  +  𝑧 ) ( -g ‘ ( 𝐺  ↾s  𝑁 ) ) 𝑔 ) ) ) | 
						
							| 98 |  | eqeq2 | ⊢ ( 𝐾  =  ran  ( 𝑧  ∈  𝑠  ↦  ( ( 𝑔  +  𝑧 ) ( -g ‘ ( 𝐺  ↾s  𝑁 ) ) 𝑔 ) )  →  ( 𝑠  =  𝐾  ↔  𝑠  =  ran  ( 𝑧  ∈  𝑠  ↦  ( ( 𝑔  +  𝑧 ) ( -g ‘ ( 𝐺  ↾s  𝑁 ) ) 𝑔 ) ) ) ) | 
						
							| 99 | 97 98 | syl5ibrcom | ⊢ ( ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝐾  ⊆  𝑁 )  ∧  𝑔  ∈  ( Base ‘ ( 𝐺  ↾s  𝑁 ) ) )  →  ( 𝐾  =  ran  ( 𝑧  ∈  𝑠  ↦  ( ( 𝑔  +  𝑧 ) ( -g ‘ ( 𝐺  ↾s  𝑁 ) ) 𝑔 ) )  →  𝑠  =  𝐾 ) ) | 
						
							| 100 | 99 | rexlimdva | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝐾  ⊆  𝑁 )  →  ( ∃ 𝑔  ∈  ( Base ‘ ( 𝐺  ↾s  𝑁 ) ) 𝐾  =  ran  ( 𝑧  ∈  𝑠  ↦  ( ( 𝑔  +  𝑧 ) ( -g ‘ ( 𝐺  ↾s  𝑁 ) ) 𝑔 ) )  →  𝑠  =  𝐾 ) ) | 
						
							| 101 | 92 100 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝐾  ⊆  𝑁 )  →  𝑠  =  𝐾 ) | 
						
							| 102 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝑠  =  𝐾 )  →  𝑠  =  𝐾 ) | 
						
							| 103 | 16 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝑠  =  𝐾 )  →  𝐾  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 104 | 102 103 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝑠  =  𝐾 )  →  𝑠  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 105 | 104 83 | syl | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝑠  =  𝐾 )  →  𝑠  ⊆  𝑁 ) | 
						
							| 106 | 102 105 | eqsstrrd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  ∧  𝑠  =  𝐾 )  →  𝐾  ⊆  𝑁 ) | 
						
							| 107 | 101 106 | impbida | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  →  ( 𝐾  ⊆  𝑁  ↔  𝑠  =  𝐾 ) ) | 
						
							| 108 | 62 64 107 | 3bitr3d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 𝑃  pSyl  𝐺 ) )  →  ( ∀ 𝑔  ∈  ( Base ‘ ( 𝐺  ↾s  𝐾 ) ) ( 𝑔  ⊕  𝑠 )  =  𝑠  ↔  𝑠  =  𝐾 ) ) | 
						
							| 109 | 108 | rabbidva | ⊢ ( 𝜑  →  { 𝑠  ∈  ( 𝑃  pSyl  𝐺 )  ∣  ∀ 𝑔  ∈  ( Base ‘ ( 𝐺  ↾s  𝐾 ) ) ( 𝑔  ⊕  𝑠 )  =  𝑠 }  =  { 𝑠  ∈  ( 𝑃  pSyl  𝐺 )  ∣  𝑠  =  𝐾 } ) | 
						
							| 110 |  | rabsn | ⊢ ( 𝐾  ∈  ( 𝑃  pSyl  𝐺 )  →  { 𝑠  ∈  ( 𝑃  pSyl  𝐺 )  ∣  𝑠  =  𝐾 }  =  { 𝐾 } ) | 
						
							| 111 | 7 110 | syl | ⊢ ( 𝜑  →  { 𝑠  ∈  ( 𝑃  pSyl  𝐺 )  ∣  𝑠  =  𝐾 }  =  { 𝐾 } ) | 
						
							| 112 | 109 111 | eqtrd | ⊢ ( 𝜑  →  { 𝑠  ∈  ( 𝑃  pSyl  𝐺 )  ∣  ∀ 𝑔  ∈  ( Base ‘ ( 𝐺  ↾s  𝐾 ) ) ( 𝑔  ⊕  𝑠 )  =  𝑠 }  =  { 𝐾 } ) | 
						
							| 113 | 112 | fveq2d | ⊢ ( 𝜑  →  ( ♯ ‘ { 𝑠  ∈  ( 𝑃  pSyl  𝐺 )  ∣  ∀ 𝑔  ∈  ( Base ‘ ( 𝐺  ↾s  𝐾 ) ) ( 𝑔  ⊕  𝑠 )  =  𝑠 } )  =  ( ♯ ‘ { 𝐾 } ) ) | 
						
							| 114 |  | hashsng | ⊢ ( 𝐾  ∈  ( 𝑃  pSyl  𝐺 )  →  ( ♯ ‘ { 𝐾 } )  =  1 ) | 
						
							| 115 | 7 114 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ { 𝐾 } )  =  1 ) | 
						
							| 116 | 113 115 | eqtrd | ⊢ ( 𝜑  →  ( ♯ ‘ { 𝑠  ∈  ( 𝑃  pSyl  𝐺 )  ∣  ∀ 𝑔  ∈  ( Base ‘ ( 𝐺  ↾s  𝐾 ) ) ( 𝑔  ⊕  𝑠 )  =  𝑠 } )  =  1 ) | 
						
							| 117 | 116 | oveq2d | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( 𝑃  pSyl  𝐺 ) )  −  ( ♯ ‘ { 𝑠  ∈  ( 𝑃  pSyl  𝐺 )  ∣  ∀ 𝑔  ∈  ( Base ‘ ( 𝐺  ↾s  𝐾 ) ) ( 𝑔  ⊕  𝑠 )  =  𝑠 } ) )  =  ( ( ♯ ‘ ( 𝑃  pSyl  𝐺 ) )  −  1 ) ) | 
						
							| 118 | 34 117 | breqtrd | ⊢ ( 𝜑  →  𝑃  ∥  ( ( ♯ ‘ ( 𝑃  pSyl  𝐺 ) )  −  1 ) ) | 
						
							| 119 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 120 | 4 119 | syl | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 121 |  | hashcl | ⊢ ( ( 𝑃  pSyl  𝐺 )  ∈  Fin  →  ( ♯ ‘ ( 𝑃  pSyl  𝐺 ) )  ∈  ℕ0 ) | 
						
							| 122 | 31 121 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑃  pSyl  𝐺 ) )  ∈  ℕ0 ) | 
						
							| 123 | 122 | nn0zd | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑃  pSyl  𝐺 ) )  ∈  ℤ ) | 
						
							| 124 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 125 |  | moddvds | ⊢ ( ( 𝑃  ∈  ℕ  ∧  ( ♯ ‘ ( 𝑃  pSyl  𝐺 ) )  ∈  ℤ  ∧  1  ∈  ℤ )  →  ( ( ( ♯ ‘ ( 𝑃  pSyl  𝐺 ) )  mod  𝑃 )  =  ( 1  mod  𝑃 )  ↔  𝑃  ∥  ( ( ♯ ‘ ( 𝑃  pSyl  𝐺 ) )  −  1 ) ) ) | 
						
							| 126 | 120 123 124 125 | syl3anc | ⊢ ( 𝜑  →  ( ( ( ♯ ‘ ( 𝑃  pSyl  𝐺 ) )  mod  𝑃 )  =  ( 1  mod  𝑃 )  ↔  𝑃  ∥  ( ( ♯ ‘ ( 𝑃  pSyl  𝐺 ) )  −  1 ) ) ) | 
						
							| 127 | 118 126 | mpbird | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( 𝑃  pSyl  𝐺 ) )  mod  𝑃 )  =  ( 1  mod  𝑃 ) ) | 
						
							| 128 |  | prmuz2 | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 129 |  | eluz2b2 | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 𝑃  ∈  ℕ  ∧  1  <  𝑃 ) ) | 
						
							| 130 |  | nnre | ⊢ ( 𝑃  ∈  ℕ  →  𝑃  ∈  ℝ ) | 
						
							| 131 |  | 1mod | ⊢ ( ( 𝑃  ∈  ℝ  ∧  1  <  𝑃 )  →  ( 1  mod  𝑃 )  =  1 ) | 
						
							| 132 | 130 131 | sylan | ⊢ ( ( 𝑃  ∈  ℕ  ∧  1  <  𝑃 )  →  ( 1  mod  𝑃 )  =  1 ) | 
						
							| 133 | 129 132 | sylbi | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  →  ( 1  mod  𝑃 )  =  1 ) | 
						
							| 134 | 4 128 133 | 3syl | ⊢ ( 𝜑  →  ( 1  mod  𝑃 )  =  1 ) | 
						
							| 135 | 127 134 | eqtrd | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( 𝑃  pSyl  𝐺 ) )  mod  𝑃 )  =  1 ) |