Step |
Hyp |
Ref |
Expression |
1 |
|
sylow3.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
sylow3.g |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
3 |
|
sylow3.xf |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
4 |
|
sylow3.p |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
5 |
|
sylow3lem5.a |
⊢ + = ( +g ‘ 𝐺 ) |
6 |
|
sylow3lem5.d |
⊢ − = ( -g ‘ 𝐺 ) |
7 |
|
sylow3lem5.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝑃 pSyl 𝐺 ) ) |
8 |
|
sylow3lem5.m |
⊢ ⊕ = ( 𝑥 ∈ 𝐾 , 𝑦 ∈ ( 𝑃 pSyl 𝐺 ) ↦ ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ) |
9 |
|
sylow3lem6.n |
⊢ 𝑁 = { 𝑥 ∈ 𝑋 ∣ ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑠 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑠 ) } |
10 |
|
eqid |
⊢ ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) = ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) |
11 |
1 2 3 4 5 6 7 8
|
sylow3lem5 |
⊢ ( 𝜑 → ⊕ ∈ ( ( 𝐺 ↾s 𝐾 ) GrpAct ( 𝑃 pSyl 𝐺 ) ) ) |
12 |
|
eqid |
⊢ ( 𝐺 ↾s 𝐾 ) = ( 𝐺 ↾s 𝐾 ) |
13 |
12
|
slwpgp |
⊢ ( 𝐾 ∈ ( 𝑃 pSyl 𝐺 ) → 𝑃 pGrp ( 𝐺 ↾s 𝐾 ) ) |
14 |
7 13
|
syl |
⊢ ( 𝜑 → 𝑃 pGrp ( 𝐺 ↾s 𝐾 ) ) |
15 |
|
slwsubg |
⊢ ( 𝐾 ∈ ( 𝑃 pSyl 𝐺 ) → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) |
16 |
7 15
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) |
17 |
12
|
subgbas |
⊢ ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → 𝐾 = ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → 𝐾 = ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) ) |
19 |
1
|
subgss |
⊢ ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → 𝐾 ⊆ 𝑋 ) |
20 |
16 19
|
syl |
⊢ ( 𝜑 → 𝐾 ⊆ 𝑋 ) |
21 |
3 20
|
ssfid |
⊢ ( 𝜑 → 𝐾 ∈ Fin ) |
22 |
18 21
|
eqeltrrd |
⊢ ( 𝜑 → ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) ∈ Fin ) |
23 |
|
pwfi |
⊢ ( 𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin ) |
24 |
3 23
|
sylib |
⊢ ( 𝜑 → 𝒫 𝑋 ∈ Fin ) |
25 |
|
slwsubg |
⊢ ( 𝑥 ∈ ( 𝑃 pSyl 𝐺 ) → 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ) |
26 |
1
|
subgss |
⊢ ( 𝑥 ∈ ( SubGrp ‘ 𝐺 ) → 𝑥 ⊆ 𝑋 ) |
27 |
25 26
|
syl |
⊢ ( 𝑥 ∈ ( 𝑃 pSyl 𝐺 ) → 𝑥 ⊆ 𝑋 ) |
28 |
25 27
|
elpwd |
⊢ ( 𝑥 ∈ ( 𝑃 pSyl 𝐺 ) → 𝑥 ∈ 𝒫 𝑋 ) |
29 |
28
|
ssriv |
⊢ ( 𝑃 pSyl 𝐺 ) ⊆ 𝒫 𝑋 |
30 |
|
ssfi |
⊢ ( ( 𝒫 𝑋 ∈ Fin ∧ ( 𝑃 pSyl 𝐺 ) ⊆ 𝒫 𝑋 ) → ( 𝑃 pSyl 𝐺 ) ∈ Fin ) |
31 |
24 29 30
|
sylancl |
⊢ ( 𝜑 → ( 𝑃 pSyl 𝐺 ) ∈ Fin ) |
32 |
|
eqid |
⊢ { 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ∣ ∀ 𝑔 ∈ ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) ( 𝑔 ⊕ 𝑠 ) = 𝑠 } = { 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ∣ ∀ 𝑔 ∈ ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) ( 𝑔 ⊕ 𝑠 ) = 𝑠 } |
33 |
|
eqid |
⊢ { 〈 𝑧 , 𝑤 〉 ∣ ( { 𝑧 , 𝑤 } ⊆ ( 𝑃 pSyl 𝐺 ) ∧ ∃ ℎ ∈ ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) ( ℎ ⊕ 𝑧 ) = 𝑤 ) } = { 〈 𝑧 , 𝑤 〉 ∣ ( { 𝑧 , 𝑤 } ⊆ ( 𝑃 pSyl 𝐺 ) ∧ ∃ ℎ ∈ ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) ( ℎ ⊕ 𝑧 ) = 𝑤 ) } |
34 |
10 11 14 22 31 32 33
|
sylow2a |
⊢ ( 𝜑 → 𝑃 ∥ ( ( ♯ ‘ ( 𝑃 pSyl 𝐺 ) ) − ( ♯ ‘ { 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ∣ ∀ 𝑔 ∈ ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) ( 𝑔 ⊕ 𝑠 ) = 𝑠 } ) ) ) |
35 |
|
eqcom |
⊢ ( ran ( 𝑧 ∈ 𝑠 ↦ ( ( 𝑔 + 𝑧 ) − 𝑔 ) ) = 𝑠 ↔ 𝑠 = ran ( 𝑧 ∈ 𝑠 ↦ ( ( 𝑔 + 𝑧 ) − 𝑔 ) ) ) |
36 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) → 𝐾 ⊆ 𝑋 ) |
37 |
36
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝑔 ∈ 𝐾 ) → 𝑔 ∈ 𝑋 ) |
38 |
37
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝑔 ∈ 𝐾 ) → ( 𝑠 = ran ( 𝑧 ∈ 𝑠 ↦ ( ( 𝑔 + 𝑧 ) − 𝑔 ) ) ↔ ( 𝑔 ∈ 𝑋 ∧ 𝑠 = ran ( 𝑧 ∈ 𝑠 ↦ ( ( 𝑔 + 𝑧 ) − 𝑔 ) ) ) ) ) |
39 |
35 38
|
syl5bb |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝑔 ∈ 𝐾 ) → ( ran ( 𝑧 ∈ 𝑠 ↦ ( ( 𝑔 + 𝑧 ) − 𝑔 ) ) = 𝑠 ↔ ( 𝑔 ∈ 𝑋 ∧ 𝑠 = ran ( 𝑧 ∈ 𝑠 ↦ ( ( 𝑔 + 𝑧 ) − 𝑔 ) ) ) ) ) |
40 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝑔 ∈ 𝐾 ) → 𝑔 ∈ 𝐾 ) |
41 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝑔 ∈ 𝐾 ) → 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) |
42 |
|
simpr |
⊢ ( ( 𝑥 = 𝑔 ∧ 𝑦 = 𝑠 ) → 𝑦 = 𝑠 ) |
43 |
|
simpl |
⊢ ( ( 𝑥 = 𝑔 ∧ 𝑦 = 𝑠 ) → 𝑥 = 𝑔 ) |
44 |
43
|
oveq1d |
⊢ ( ( 𝑥 = 𝑔 ∧ 𝑦 = 𝑠 ) → ( 𝑥 + 𝑧 ) = ( 𝑔 + 𝑧 ) ) |
45 |
44 43
|
oveq12d |
⊢ ( ( 𝑥 = 𝑔 ∧ 𝑦 = 𝑠 ) → ( ( 𝑥 + 𝑧 ) − 𝑥 ) = ( ( 𝑔 + 𝑧 ) − 𝑔 ) ) |
46 |
42 45
|
mpteq12dv |
⊢ ( ( 𝑥 = 𝑔 ∧ 𝑦 = 𝑠 ) → ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) = ( 𝑧 ∈ 𝑠 ↦ ( ( 𝑔 + 𝑧 ) − 𝑔 ) ) ) |
47 |
46
|
rneqd |
⊢ ( ( 𝑥 = 𝑔 ∧ 𝑦 = 𝑠 ) → ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) = ran ( 𝑧 ∈ 𝑠 ↦ ( ( 𝑔 + 𝑧 ) − 𝑔 ) ) ) |
48 |
|
vex |
⊢ 𝑠 ∈ V |
49 |
48
|
mptex |
⊢ ( 𝑧 ∈ 𝑠 ↦ ( ( 𝑔 + 𝑧 ) − 𝑔 ) ) ∈ V |
50 |
49
|
rnex |
⊢ ran ( 𝑧 ∈ 𝑠 ↦ ( ( 𝑔 + 𝑧 ) − 𝑔 ) ) ∈ V |
51 |
47 8 50
|
ovmpoa |
⊢ ( ( 𝑔 ∈ 𝐾 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) → ( 𝑔 ⊕ 𝑠 ) = ran ( 𝑧 ∈ 𝑠 ↦ ( ( 𝑔 + 𝑧 ) − 𝑔 ) ) ) |
52 |
40 41 51
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝑔 ∈ 𝐾 ) → ( 𝑔 ⊕ 𝑠 ) = ran ( 𝑧 ∈ 𝑠 ↦ ( ( 𝑔 + 𝑧 ) − 𝑔 ) ) ) |
53 |
52
|
eqeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝑔 ∈ 𝐾 ) → ( ( 𝑔 ⊕ 𝑠 ) = 𝑠 ↔ ran ( 𝑧 ∈ 𝑠 ↦ ( ( 𝑔 + 𝑧 ) − 𝑔 ) ) = 𝑠 ) ) |
54 |
|
slwsubg |
⊢ ( 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) → 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ) |
55 |
54
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝑔 ∈ 𝐾 ) → 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ) |
56 |
|
eqid |
⊢ ( 𝑧 ∈ 𝑠 ↦ ( ( 𝑔 + 𝑧 ) − 𝑔 ) ) = ( 𝑧 ∈ 𝑠 ↦ ( ( 𝑔 + 𝑧 ) − 𝑔 ) ) |
57 |
1 5 6 56 9
|
conjnmzb |
⊢ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑔 ∈ 𝑁 ↔ ( 𝑔 ∈ 𝑋 ∧ 𝑠 = ran ( 𝑧 ∈ 𝑠 ↦ ( ( 𝑔 + 𝑧 ) − 𝑔 ) ) ) ) ) |
58 |
55 57
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝑔 ∈ 𝐾 ) → ( 𝑔 ∈ 𝑁 ↔ ( 𝑔 ∈ 𝑋 ∧ 𝑠 = ran ( 𝑧 ∈ 𝑠 ↦ ( ( 𝑔 + 𝑧 ) − 𝑔 ) ) ) ) ) |
59 |
39 53 58
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝑔 ∈ 𝐾 ) → ( ( 𝑔 ⊕ 𝑠 ) = 𝑠 ↔ 𝑔 ∈ 𝑁 ) ) |
60 |
59
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) → ( ∀ 𝑔 ∈ 𝐾 ( 𝑔 ⊕ 𝑠 ) = 𝑠 ↔ ∀ 𝑔 ∈ 𝐾 𝑔 ∈ 𝑁 ) ) |
61 |
|
dfss3 |
⊢ ( 𝐾 ⊆ 𝑁 ↔ ∀ 𝑔 ∈ 𝐾 𝑔 ∈ 𝑁 ) |
62 |
60 61
|
bitr4di |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) → ( ∀ 𝑔 ∈ 𝐾 ( 𝑔 ⊕ 𝑠 ) = 𝑠 ↔ 𝐾 ⊆ 𝑁 ) ) |
63 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) → 𝐾 = ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) ) |
64 |
63
|
raleqdv |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) → ( ∀ 𝑔 ∈ 𝐾 ( 𝑔 ⊕ 𝑠 ) = 𝑠 ↔ ∀ 𝑔 ∈ ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) ( 𝑔 ⊕ 𝑠 ) = 𝑠 ) ) |
65 |
|
eqid |
⊢ ( Base ‘ ( 𝐺 ↾s 𝑁 ) ) = ( Base ‘ ( 𝐺 ↾s 𝑁 ) ) |
66 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝐾 ⊆ 𝑁 ) → 𝐺 ∈ Grp ) |
67 |
9 1 5
|
nmzsubg |
⊢ ( 𝐺 ∈ Grp → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
68 |
66 67
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝐾 ⊆ 𝑁 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
69 |
|
eqid |
⊢ ( 𝐺 ↾s 𝑁 ) = ( 𝐺 ↾s 𝑁 ) |
70 |
69
|
subgbas |
⊢ ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → 𝑁 = ( Base ‘ ( 𝐺 ↾s 𝑁 ) ) ) |
71 |
68 70
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝐾 ⊆ 𝑁 ) → 𝑁 = ( Base ‘ ( 𝐺 ↾s 𝑁 ) ) ) |
72 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝐾 ⊆ 𝑁 ) → 𝑋 ∈ Fin ) |
73 |
1
|
subgss |
⊢ ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → 𝑁 ⊆ 𝑋 ) |
74 |
68 73
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝐾 ⊆ 𝑁 ) → 𝑁 ⊆ 𝑋 ) |
75 |
72 74
|
ssfid |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝐾 ⊆ 𝑁 ) → 𝑁 ∈ Fin ) |
76 |
71 75
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝐾 ⊆ 𝑁 ) → ( Base ‘ ( 𝐺 ↾s 𝑁 ) ) ∈ Fin ) |
77 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝐾 ⊆ 𝑁 ) → 𝐾 ∈ ( 𝑃 pSyl 𝐺 ) ) |
78 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝐾 ⊆ 𝑁 ) → 𝐾 ⊆ 𝑁 ) |
79 |
69
|
subgslw |
⊢ ( ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐾 ∈ ( 𝑃 pSyl 𝐺 ) ∧ 𝐾 ⊆ 𝑁 ) → 𝐾 ∈ ( 𝑃 pSyl ( 𝐺 ↾s 𝑁 ) ) ) |
80 |
68 77 78 79
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝐾 ⊆ 𝑁 ) → 𝐾 ∈ ( 𝑃 pSyl ( 𝐺 ↾s 𝑁 ) ) ) |
81 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝐾 ⊆ 𝑁 ) → 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) |
82 |
54
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝐾 ⊆ 𝑁 ) → 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ) |
83 |
9 1 5
|
ssnmz |
⊢ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) → 𝑠 ⊆ 𝑁 ) |
84 |
82 83
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝐾 ⊆ 𝑁 ) → 𝑠 ⊆ 𝑁 ) |
85 |
69
|
subgslw |
⊢ ( ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ∧ 𝑠 ⊆ 𝑁 ) → 𝑠 ∈ ( 𝑃 pSyl ( 𝐺 ↾s 𝑁 ) ) ) |
86 |
68 81 84 85
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝐾 ⊆ 𝑁 ) → 𝑠 ∈ ( 𝑃 pSyl ( 𝐺 ↾s 𝑁 ) ) ) |
87 |
1
|
fvexi |
⊢ 𝑋 ∈ V |
88 |
9 87
|
rabex2 |
⊢ 𝑁 ∈ V |
89 |
69 5
|
ressplusg |
⊢ ( 𝑁 ∈ V → + = ( +g ‘ ( 𝐺 ↾s 𝑁 ) ) ) |
90 |
88 89
|
ax-mp |
⊢ + = ( +g ‘ ( 𝐺 ↾s 𝑁 ) ) |
91 |
|
eqid |
⊢ ( -g ‘ ( 𝐺 ↾s 𝑁 ) ) = ( -g ‘ ( 𝐺 ↾s 𝑁 ) ) |
92 |
65 76 80 86 90 91
|
sylow2 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝐾 ⊆ 𝑁 ) → ∃ 𝑔 ∈ ( Base ‘ ( 𝐺 ↾s 𝑁 ) ) 𝐾 = ran ( 𝑧 ∈ 𝑠 ↦ ( ( 𝑔 + 𝑧 ) ( -g ‘ ( 𝐺 ↾s 𝑁 ) ) 𝑔 ) ) ) |
93 |
9 1 5 69
|
nmznsg |
⊢ ( 𝑠 ∈ ( SubGrp ‘ 𝐺 ) → 𝑠 ∈ ( NrmSGrp ‘ ( 𝐺 ↾s 𝑁 ) ) ) |
94 |
82 93
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝐾 ⊆ 𝑁 ) → 𝑠 ∈ ( NrmSGrp ‘ ( 𝐺 ↾s 𝑁 ) ) ) |
95 |
|
eqid |
⊢ ( 𝑧 ∈ 𝑠 ↦ ( ( 𝑔 + 𝑧 ) ( -g ‘ ( 𝐺 ↾s 𝑁 ) ) 𝑔 ) ) = ( 𝑧 ∈ 𝑠 ↦ ( ( 𝑔 + 𝑧 ) ( -g ‘ ( 𝐺 ↾s 𝑁 ) ) 𝑔 ) ) |
96 |
65 90 91 95
|
conjnsg |
⊢ ( ( 𝑠 ∈ ( NrmSGrp ‘ ( 𝐺 ↾s 𝑁 ) ) ∧ 𝑔 ∈ ( Base ‘ ( 𝐺 ↾s 𝑁 ) ) ) → 𝑠 = ran ( 𝑧 ∈ 𝑠 ↦ ( ( 𝑔 + 𝑧 ) ( -g ‘ ( 𝐺 ↾s 𝑁 ) ) 𝑔 ) ) ) |
97 |
94 96
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝐾 ⊆ 𝑁 ) ∧ 𝑔 ∈ ( Base ‘ ( 𝐺 ↾s 𝑁 ) ) ) → 𝑠 = ran ( 𝑧 ∈ 𝑠 ↦ ( ( 𝑔 + 𝑧 ) ( -g ‘ ( 𝐺 ↾s 𝑁 ) ) 𝑔 ) ) ) |
98 |
|
eqeq2 |
⊢ ( 𝐾 = ran ( 𝑧 ∈ 𝑠 ↦ ( ( 𝑔 + 𝑧 ) ( -g ‘ ( 𝐺 ↾s 𝑁 ) ) 𝑔 ) ) → ( 𝑠 = 𝐾 ↔ 𝑠 = ran ( 𝑧 ∈ 𝑠 ↦ ( ( 𝑔 + 𝑧 ) ( -g ‘ ( 𝐺 ↾s 𝑁 ) ) 𝑔 ) ) ) ) |
99 |
97 98
|
syl5ibrcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝐾 ⊆ 𝑁 ) ∧ 𝑔 ∈ ( Base ‘ ( 𝐺 ↾s 𝑁 ) ) ) → ( 𝐾 = ran ( 𝑧 ∈ 𝑠 ↦ ( ( 𝑔 + 𝑧 ) ( -g ‘ ( 𝐺 ↾s 𝑁 ) ) 𝑔 ) ) → 𝑠 = 𝐾 ) ) |
100 |
99
|
rexlimdva |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝐾 ⊆ 𝑁 ) → ( ∃ 𝑔 ∈ ( Base ‘ ( 𝐺 ↾s 𝑁 ) ) 𝐾 = ran ( 𝑧 ∈ 𝑠 ↦ ( ( 𝑔 + 𝑧 ) ( -g ‘ ( 𝐺 ↾s 𝑁 ) ) 𝑔 ) ) → 𝑠 = 𝐾 ) ) |
101 |
92 100
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝐾 ⊆ 𝑁 ) → 𝑠 = 𝐾 ) |
102 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝑠 = 𝐾 ) → 𝑠 = 𝐾 ) |
103 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝑠 = 𝐾 ) → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) |
104 |
102 103
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝑠 = 𝐾 ) → 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ) |
105 |
104 83
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝑠 = 𝐾 ) → 𝑠 ⊆ 𝑁 ) |
106 |
102 105
|
eqsstrrd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) ∧ 𝑠 = 𝐾 ) → 𝐾 ⊆ 𝑁 ) |
107 |
101 106
|
impbida |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) → ( 𝐾 ⊆ 𝑁 ↔ 𝑠 = 𝐾 ) ) |
108 |
62 64 107
|
3bitr3d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ) → ( ∀ 𝑔 ∈ ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) ( 𝑔 ⊕ 𝑠 ) = 𝑠 ↔ 𝑠 = 𝐾 ) ) |
109 |
108
|
rabbidva |
⊢ ( 𝜑 → { 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ∣ ∀ 𝑔 ∈ ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) ( 𝑔 ⊕ 𝑠 ) = 𝑠 } = { 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ∣ 𝑠 = 𝐾 } ) |
110 |
|
rabsn |
⊢ ( 𝐾 ∈ ( 𝑃 pSyl 𝐺 ) → { 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ∣ 𝑠 = 𝐾 } = { 𝐾 } ) |
111 |
7 110
|
syl |
⊢ ( 𝜑 → { 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ∣ 𝑠 = 𝐾 } = { 𝐾 } ) |
112 |
109 111
|
eqtrd |
⊢ ( 𝜑 → { 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ∣ ∀ 𝑔 ∈ ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) ( 𝑔 ⊕ 𝑠 ) = 𝑠 } = { 𝐾 } ) |
113 |
112
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ∣ ∀ 𝑔 ∈ ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) ( 𝑔 ⊕ 𝑠 ) = 𝑠 } ) = ( ♯ ‘ { 𝐾 } ) ) |
114 |
|
hashsng |
⊢ ( 𝐾 ∈ ( 𝑃 pSyl 𝐺 ) → ( ♯ ‘ { 𝐾 } ) = 1 ) |
115 |
7 114
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ { 𝐾 } ) = 1 ) |
116 |
113 115
|
eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ∣ ∀ 𝑔 ∈ ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) ( 𝑔 ⊕ 𝑠 ) = 𝑠 } ) = 1 ) |
117 |
116
|
oveq2d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝑃 pSyl 𝐺 ) ) − ( ♯ ‘ { 𝑠 ∈ ( 𝑃 pSyl 𝐺 ) ∣ ∀ 𝑔 ∈ ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) ( 𝑔 ⊕ 𝑠 ) = 𝑠 } ) ) = ( ( ♯ ‘ ( 𝑃 pSyl 𝐺 ) ) − 1 ) ) |
118 |
34 117
|
breqtrd |
⊢ ( 𝜑 → 𝑃 ∥ ( ( ♯ ‘ ( 𝑃 pSyl 𝐺 ) ) − 1 ) ) |
119 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
120 |
4 119
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
121 |
|
hashcl |
⊢ ( ( 𝑃 pSyl 𝐺 ) ∈ Fin → ( ♯ ‘ ( 𝑃 pSyl 𝐺 ) ) ∈ ℕ0 ) |
122 |
31 121
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑃 pSyl 𝐺 ) ) ∈ ℕ0 ) |
123 |
122
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑃 pSyl 𝐺 ) ) ∈ ℤ ) |
124 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
125 |
|
moddvds |
⊢ ( ( 𝑃 ∈ ℕ ∧ ( ♯ ‘ ( 𝑃 pSyl 𝐺 ) ) ∈ ℤ ∧ 1 ∈ ℤ ) → ( ( ( ♯ ‘ ( 𝑃 pSyl 𝐺 ) ) mod 𝑃 ) = ( 1 mod 𝑃 ) ↔ 𝑃 ∥ ( ( ♯ ‘ ( 𝑃 pSyl 𝐺 ) ) − 1 ) ) ) |
126 |
120 123 124 125
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ♯ ‘ ( 𝑃 pSyl 𝐺 ) ) mod 𝑃 ) = ( 1 mod 𝑃 ) ↔ 𝑃 ∥ ( ( ♯ ‘ ( 𝑃 pSyl 𝐺 ) ) − 1 ) ) ) |
127 |
118 126
|
mpbird |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝑃 pSyl 𝐺 ) ) mod 𝑃 ) = ( 1 mod 𝑃 ) ) |
128 |
|
prmuz2 |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
129 |
|
eluz2b2 |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑃 ∈ ℕ ∧ 1 < 𝑃 ) ) |
130 |
|
nnre |
⊢ ( 𝑃 ∈ ℕ → 𝑃 ∈ ℝ ) |
131 |
|
1mod |
⊢ ( ( 𝑃 ∈ ℝ ∧ 1 < 𝑃 ) → ( 1 mod 𝑃 ) = 1 ) |
132 |
130 131
|
sylan |
⊢ ( ( 𝑃 ∈ ℕ ∧ 1 < 𝑃 ) → ( 1 mod 𝑃 ) = 1 ) |
133 |
129 132
|
sylbi |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ( 1 mod 𝑃 ) = 1 ) |
134 |
4 128 133
|
3syl |
⊢ ( 𝜑 → ( 1 mod 𝑃 ) = 1 ) |
135 |
127 134
|
eqtrd |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝑃 pSyl 𝐺 ) ) mod 𝑃 ) = 1 ) |