| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sylow3.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | sylow3.g | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 3 |  | sylow3.xf | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 4 |  | sylow3.p | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 5 |  | sylow3lem5.a | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 6 |  | sylow3lem5.d | ⊢  −   =  ( -g ‘ 𝐺 ) | 
						
							| 7 |  | sylow3lem5.k | ⊢ ( 𝜑  →  𝐾  ∈  ( 𝑃  pSyl  𝐺 ) ) | 
						
							| 8 |  | sylow3lem5.m | ⊢  ⊕   =  ( 𝑥  ∈  𝐾 ,  𝑦  ∈  ( 𝑃  pSyl  𝐺 )  ↦  ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) ) ) | 
						
							| 9 |  | slwsubg | ⊢ ( 𝐾  ∈  ( 𝑃  pSyl  𝐺 )  →  𝐾  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 10 | 7 9 | syl | ⊢ ( 𝜑  →  𝐾  ∈  ( SubGrp ‘ 𝐺 ) ) | 
						
							| 11 | 1 | subgss | ⊢ ( 𝐾  ∈  ( SubGrp ‘ 𝐺 )  →  𝐾  ⊆  𝑋 ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝜑  →  𝐾  ⊆  𝑋 ) | 
						
							| 13 |  | ssid | ⊢ ( 𝑃  pSyl  𝐺 )  ⊆  ( 𝑃  pSyl  𝐺 ) | 
						
							| 14 |  | resmpo | ⊢ ( ( 𝐾  ⊆  𝑋  ∧  ( 𝑃  pSyl  𝐺 )  ⊆  ( 𝑃  pSyl  𝐺 ) )  →  ( ( 𝑥  ∈  𝑋 ,  𝑦  ∈  ( 𝑃  pSyl  𝐺 )  ↦  ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) ) )  ↾  ( 𝐾  ×  ( 𝑃  pSyl  𝐺 ) ) )  =  ( 𝑥  ∈  𝐾 ,  𝑦  ∈  ( 𝑃  pSyl  𝐺 )  ↦  ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) ) ) ) | 
						
							| 15 | 12 13 14 | sylancl | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝑋 ,  𝑦  ∈  ( 𝑃  pSyl  𝐺 )  ↦  ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) ) )  ↾  ( 𝐾  ×  ( 𝑃  pSyl  𝐺 ) ) )  =  ( 𝑥  ∈  𝐾 ,  𝑦  ∈  ( 𝑃  pSyl  𝐺 )  ↦  ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) ) ) ) | 
						
							| 16 | 15 8 | eqtr4di | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝑋 ,  𝑦  ∈  ( 𝑃  pSyl  𝐺 )  ↦  ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) ) )  ↾  ( 𝐾  ×  ( 𝑃  pSyl  𝐺 ) ) )  =   ⊕  ) | 
						
							| 17 |  | oveq2 | ⊢ ( 𝑧  =  𝑐  →  ( 𝑥  +  𝑧 )  =  ( 𝑥  +  𝑐 ) ) | 
						
							| 18 | 17 | oveq1d | ⊢ ( 𝑧  =  𝑐  →  ( ( 𝑥  +  𝑧 )  −  𝑥 )  =  ( ( 𝑥  +  𝑐 )  −  𝑥 ) ) | 
						
							| 19 | 18 | cbvmptv | ⊢ ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) )  =  ( 𝑐  ∈  𝑦  ↦  ( ( 𝑥  +  𝑐 )  −  𝑥 ) ) | 
						
							| 20 |  | oveq1 | ⊢ ( 𝑥  =  𝑎  →  ( 𝑥  +  𝑐 )  =  ( 𝑎  +  𝑐 ) ) | 
						
							| 21 |  | id | ⊢ ( 𝑥  =  𝑎  →  𝑥  =  𝑎 ) | 
						
							| 22 | 20 21 | oveq12d | ⊢ ( 𝑥  =  𝑎  →  ( ( 𝑥  +  𝑐 )  −  𝑥 )  =  ( ( 𝑎  +  𝑐 )  −  𝑎 ) ) | 
						
							| 23 | 22 | mpteq2dv | ⊢ ( 𝑥  =  𝑎  →  ( 𝑐  ∈  𝑦  ↦  ( ( 𝑥  +  𝑐 )  −  𝑥 ) )  =  ( 𝑐  ∈  𝑦  ↦  ( ( 𝑎  +  𝑐 )  −  𝑎 ) ) ) | 
						
							| 24 | 19 23 | eqtrid | ⊢ ( 𝑥  =  𝑎  →  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) )  =  ( 𝑐  ∈  𝑦  ↦  ( ( 𝑎  +  𝑐 )  −  𝑎 ) ) ) | 
						
							| 25 | 24 | rneqd | ⊢ ( 𝑥  =  𝑎  →  ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) )  =  ran  ( 𝑐  ∈  𝑦  ↦  ( ( 𝑎  +  𝑐 )  −  𝑎 ) ) ) | 
						
							| 26 |  | mpteq1 | ⊢ ( 𝑦  =  𝑏  →  ( 𝑐  ∈  𝑦  ↦  ( ( 𝑎  +  𝑐 )  −  𝑎 ) )  =  ( 𝑐  ∈  𝑏  ↦  ( ( 𝑎  +  𝑐 )  −  𝑎 ) ) ) | 
						
							| 27 | 26 | rneqd | ⊢ ( 𝑦  =  𝑏  →  ran  ( 𝑐  ∈  𝑦  ↦  ( ( 𝑎  +  𝑐 )  −  𝑎 ) )  =  ran  ( 𝑐  ∈  𝑏  ↦  ( ( 𝑎  +  𝑐 )  −  𝑎 ) ) ) | 
						
							| 28 | 25 27 | cbvmpov | ⊢ ( 𝑥  ∈  𝑋 ,  𝑦  ∈  ( 𝑃  pSyl  𝐺 )  ↦  ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) ) )  =  ( 𝑎  ∈  𝑋 ,  𝑏  ∈  ( 𝑃  pSyl  𝐺 )  ↦  ran  ( 𝑐  ∈  𝑏  ↦  ( ( 𝑎  +  𝑐 )  −  𝑎 ) ) ) | 
						
							| 29 | 1 2 3 4 5 6 28 | sylow3lem1 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  ( 𝑃  pSyl  𝐺 )  ↦  ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) ) )  ∈  ( 𝐺  GrpAct  ( 𝑃  pSyl  𝐺 ) ) ) | 
						
							| 30 |  | eqid | ⊢ ( 𝐺  ↾s  𝐾 )  =  ( 𝐺  ↾s  𝐾 ) | 
						
							| 31 | 30 | gasubg | ⊢ ( ( ( 𝑥  ∈  𝑋 ,  𝑦  ∈  ( 𝑃  pSyl  𝐺 )  ↦  ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) ) )  ∈  ( 𝐺  GrpAct  ( 𝑃  pSyl  𝐺 ) )  ∧  𝐾  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( ( 𝑥  ∈  𝑋 ,  𝑦  ∈  ( 𝑃  pSyl  𝐺 )  ↦  ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) ) )  ↾  ( 𝐾  ×  ( 𝑃  pSyl  𝐺 ) ) )  ∈  ( ( 𝐺  ↾s  𝐾 )  GrpAct  ( 𝑃  pSyl  𝐺 ) ) ) | 
						
							| 32 | 29 10 31 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝑋 ,  𝑦  ∈  ( 𝑃  pSyl  𝐺 )  ↦  ran  ( 𝑧  ∈  𝑦  ↦  ( ( 𝑥  +  𝑧 )  −  𝑥 ) ) )  ↾  ( 𝐾  ×  ( 𝑃  pSyl  𝐺 ) ) )  ∈  ( ( 𝐺  ↾s  𝐾 )  GrpAct  ( 𝑃  pSyl  𝐺 ) ) ) | 
						
							| 33 | 16 32 | eqeltrrd | ⊢ ( 𝜑  →   ⊕   ∈  ( ( 𝐺  ↾s  𝐾 )  GrpAct  ( 𝑃  pSyl  𝐺 ) ) ) |