| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sylow3.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 2 |
|
sylow3.g |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 3 |
|
sylow3.xf |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 4 |
|
sylow3.p |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
| 5 |
|
sylow3lem5.a |
⊢ + = ( +g ‘ 𝐺 ) |
| 6 |
|
sylow3lem5.d |
⊢ − = ( -g ‘ 𝐺 ) |
| 7 |
|
sylow3lem5.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝑃 pSyl 𝐺 ) ) |
| 8 |
|
sylow3lem5.m |
⊢ ⊕ = ( 𝑥 ∈ 𝐾 , 𝑦 ∈ ( 𝑃 pSyl 𝐺 ) ↦ ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ) |
| 9 |
|
slwsubg |
⊢ ( 𝐾 ∈ ( 𝑃 pSyl 𝐺 ) → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 10 |
7 9
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 11 |
1
|
subgss |
⊢ ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → 𝐾 ⊆ 𝑋 ) |
| 12 |
10 11
|
syl |
⊢ ( 𝜑 → 𝐾 ⊆ 𝑋 ) |
| 13 |
|
ssid |
⊢ ( 𝑃 pSyl 𝐺 ) ⊆ ( 𝑃 pSyl 𝐺 ) |
| 14 |
|
resmpo |
⊢ ( ( 𝐾 ⊆ 𝑋 ∧ ( 𝑃 pSyl 𝐺 ) ⊆ ( 𝑃 pSyl 𝐺 ) ) → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ ( 𝑃 pSyl 𝐺 ) ↦ ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ) ↾ ( 𝐾 × ( 𝑃 pSyl 𝐺 ) ) ) = ( 𝑥 ∈ 𝐾 , 𝑦 ∈ ( 𝑃 pSyl 𝐺 ) ↦ ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ) ) |
| 15 |
12 13 14
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ ( 𝑃 pSyl 𝐺 ) ↦ ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ) ↾ ( 𝐾 × ( 𝑃 pSyl 𝐺 ) ) ) = ( 𝑥 ∈ 𝐾 , 𝑦 ∈ ( 𝑃 pSyl 𝐺 ) ↦ ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ) ) |
| 16 |
15 8
|
eqtr4di |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ ( 𝑃 pSyl 𝐺 ) ↦ ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ) ↾ ( 𝐾 × ( 𝑃 pSyl 𝐺 ) ) ) = ⊕ ) |
| 17 |
|
oveq2 |
⊢ ( 𝑧 = 𝑐 → ( 𝑥 + 𝑧 ) = ( 𝑥 + 𝑐 ) ) |
| 18 |
17
|
oveq1d |
⊢ ( 𝑧 = 𝑐 → ( ( 𝑥 + 𝑧 ) − 𝑥 ) = ( ( 𝑥 + 𝑐 ) − 𝑥 ) ) |
| 19 |
18
|
cbvmptv |
⊢ ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) = ( 𝑐 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑐 ) − 𝑥 ) ) |
| 20 |
|
oveq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 + 𝑐 ) = ( 𝑎 + 𝑐 ) ) |
| 21 |
|
id |
⊢ ( 𝑥 = 𝑎 → 𝑥 = 𝑎 ) |
| 22 |
20 21
|
oveq12d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝑥 + 𝑐 ) − 𝑥 ) = ( ( 𝑎 + 𝑐 ) − 𝑎 ) ) |
| 23 |
22
|
mpteq2dv |
⊢ ( 𝑥 = 𝑎 → ( 𝑐 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑐 ) − 𝑥 ) ) = ( 𝑐 ∈ 𝑦 ↦ ( ( 𝑎 + 𝑐 ) − 𝑎 ) ) ) |
| 24 |
19 23
|
eqtrid |
⊢ ( 𝑥 = 𝑎 → ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) = ( 𝑐 ∈ 𝑦 ↦ ( ( 𝑎 + 𝑐 ) − 𝑎 ) ) ) |
| 25 |
24
|
rneqd |
⊢ ( 𝑥 = 𝑎 → ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) = ran ( 𝑐 ∈ 𝑦 ↦ ( ( 𝑎 + 𝑐 ) − 𝑎 ) ) ) |
| 26 |
|
mpteq1 |
⊢ ( 𝑦 = 𝑏 → ( 𝑐 ∈ 𝑦 ↦ ( ( 𝑎 + 𝑐 ) − 𝑎 ) ) = ( 𝑐 ∈ 𝑏 ↦ ( ( 𝑎 + 𝑐 ) − 𝑎 ) ) ) |
| 27 |
26
|
rneqd |
⊢ ( 𝑦 = 𝑏 → ran ( 𝑐 ∈ 𝑦 ↦ ( ( 𝑎 + 𝑐 ) − 𝑎 ) ) = ran ( 𝑐 ∈ 𝑏 ↦ ( ( 𝑎 + 𝑐 ) − 𝑎 ) ) ) |
| 28 |
25 27
|
cbvmpov |
⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ ( 𝑃 pSyl 𝐺 ) ↦ ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ) = ( 𝑎 ∈ 𝑋 , 𝑏 ∈ ( 𝑃 pSyl 𝐺 ) ↦ ran ( 𝑐 ∈ 𝑏 ↦ ( ( 𝑎 + 𝑐 ) − 𝑎 ) ) ) |
| 29 |
1 2 3 4 5 6 28
|
sylow3lem1 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ ( 𝑃 pSyl 𝐺 ) ↦ ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ) ∈ ( 𝐺 GrpAct ( 𝑃 pSyl 𝐺 ) ) ) |
| 30 |
|
eqid |
⊢ ( 𝐺 ↾s 𝐾 ) = ( 𝐺 ↾s 𝐾 ) |
| 31 |
30
|
gasubg |
⊢ ( ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ ( 𝑃 pSyl 𝐺 ) ↦ ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ) ∈ ( 𝐺 GrpAct ( 𝑃 pSyl 𝐺 ) ) ∧ 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ ( 𝑃 pSyl 𝐺 ) ↦ ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ) ↾ ( 𝐾 × ( 𝑃 pSyl 𝐺 ) ) ) ∈ ( ( 𝐺 ↾s 𝐾 ) GrpAct ( 𝑃 pSyl 𝐺 ) ) ) |
| 32 |
29 10 31
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ ( 𝑃 pSyl 𝐺 ) ↦ ran ( 𝑧 ∈ 𝑦 ↦ ( ( 𝑥 + 𝑧 ) − 𝑥 ) ) ) ↾ ( 𝐾 × ( 𝑃 pSyl 𝐺 ) ) ) ∈ ( ( 𝐺 ↾s 𝐾 ) GrpAct ( 𝑃 pSyl 𝐺 ) ) ) |
| 33 |
16 32
|
eqeltrrd |
⊢ ( 𝜑 → ⊕ ∈ ( ( 𝐺 ↾s 𝐾 ) GrpAct ( 𝑃 pSyl 𝐺 ) ) ) |