Description: Lemma for sylow3 , second part. Reduce the group action of sylow3lem1 to a given Sylow subgroup. (Contributed by Mario Carneiro, 19-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sylow3.x | |
|
sylow3.g | |
||
sylow3.xf | |
||
sylow3.p | |
||
sylow3lem5.a | |
||
sylow3lem5.d | |
||
sylow3lem5.k | |
||
sylow3lem5.m | |
||
Assertion | sylow3lem5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylow3.x | |
|
2 | sylow3.g | |
|
3 | sylow3.xf | |
|
4 | sylow3.p | |
|
5 | sylow3lem5.a | |
|
6 | sylow3lem5.d | |
|
7 | sylow3lem5.k | |
|
8 | sylow3lem5.m | |
|
9 | slwsubg | |
|
10 | 7 9 | syl | |
11 | 1 | subgss | |
12 | 10 11 | syl | |
13 | ssid | |
|
14 | resmpo | |
|
15 | 12 13 14 | sylancl | |
16 | 15 8 | eqtr4di | |
17 | oveq2 | |
|
18 | 17 | oveq1d | |
19 | 18 | cbvmptv | |
20 | oveq1 | |
|
21 | id | |
|
22 | 20 21 | oveq12d | |
23 | 22 | mpteq2dv | |
24 | 19 23 | eqtrid | |
25 | 24 | rneqd | |
26 | mpteq1 | |
|
27 | 26 | rneqd | |
28 | 25 27 | cbvmpov | |
29 | 1 2 3 4 5 6 28 | sylow3lem1 | |
30 | eqid | |
|
31 | 30 | gasubg | |
32 | 29 10 31 | syl2anc | |
33 | 16 32 | eqeltrrd | |