Metamath Proof Explorer


Theorem sylow3lem5

Description: Lemma for sylow3 , second part. Reduce the group action of sylow3lem1 to a given Sylow subgroup. (Contributed by Mario Carneiro, 19-Jan-2015)

Ref Expression
Hypotheses sylow3.x X=BaseG
sylow3.g φGGrp
sylow3.xf φXFin
sylow3.p φP
sylow3lem5.a +˙=+G
sylow3lem5.d -˙=-G
sylow3lem5.k φKPpSylG
sylow3lem5.m ˙=xK,yPpSylGranzyx+˙z-˙x
Assertion sylow3lem5 φ˙G𝑠KGrpActPpSylG

Proof

Step Hyp Ref Expression
1 sylow3.x X=BaseG
2 sylow3.g φGGrp
3 sylow3.xf φXFin
4 sylow3.p φP
5 sylow3lem5.a +˙=+G
6 sylow3lem5.d -˙=-G
7 sylow3lem5.k φKPpSylG
8 sylow3lem5.m ˙=xK,yPpSylGranzyx+˙z-˙x
9 slwsubg KPpSylGKSubGrpG
10 7 9 syl φKSubGrpG
11 1 subgss KSubGrpGKX
12 10 11 syl φKX
13 ssid PpSylGPpSylG
14 resmpo KXPpSylGPpSylGxX,yPpSylGranzyx+˙z-˙xK×PpSylG=xK,yPpSylGranzyx+˙z-˙x
15 12 13 14 sylancl φxX,yPpSylGranzyx+˙z-˙xK×PpSylG=xK,yPpSylGranzyx+˙z-˙x
16 15 8 eqtr4di φxX,yPpSylGranzyx+˙z-˙xK×PpSylG=˙
17 oveq2 z=cx+˙z=x+˙c
18 17 oveq1d z=cx+˙z-˙x=x+˙c-˙x
19 18 cbvmptv zyx+˙z-˙x=cyx+˙c-˙x
20 oveq1 x=ax+˙c=a+˙c
21 id x=ax=a
22 20 21 oveq12d x=ax+˙c-˙x=a+˙c-˙a
23 22 mpteq2dv x=acyx+˙c-˙x=cya+˙c-˙a
24 19 23 eqtrid x=azyx+˙z-˙x=cya+˙c-˙a
25 24 rneqd x=aranzyx+˙z-˙x=rancya+˙c-˙a
26 mpteq1 y=bcya+˙c-˙a=cba+˙c-˙a
27 26 rneqd y=brancya+˙c-˙a=rancba+˙c-˙a
28 25 27 cbvmpov xX,yPpSylGranzyx+˙z-˙x=aX,bPpSylGrancba+˙c-˙a
29 1 2 3 4 5 6 28 sylow3lem1 φxX,yPpSylGranzyx+˙z-˙xGGrpActPpSylG
30 eqid G𝑠K=G𝑠K
31 30 gasubg xX,yPpSylGranzyx+˙z-˙xGGrpActPpSylGKSubGrpGxX,yPpSylGranzyx+˙z-˙xK×PpSylGG𝑠KGrpActPpSylG
32 29 10 31 syl2anc φxX,yPpSylGranzyx+˙z-˙xK×PpSylGG𝑠KGrpActPpSylG
33 16 32 eqeltrrd φ˙G𝑠KGrpActPpSylG