| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sylow3.x |  | 
						
							| 2 |  | sylow3.g |  | 
						
							| 3 |  | sylow3.xf |  | 
						
							| 4 |  | sylow3.p |  | 
						
							| 5 |  | sylow3lem5.a |  | 
						
							| 6 |  | sylow3lem5.d |  | 
						
							| 7 |  | sylow3lem5.k |  | 
						
							| 8 |  | sylow3lem5.m |  | 
						
							| 9 |  | sylow3lem6.n |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 | 1 2 3 4 5 6 7 8 | sylow3lem5 |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 | 12 | slwpgp |  | 
						
							| 14 | 7 13 | syl |  | 
						
							| 15 |  | slwsubg |  | 
						
							| 16 | 7 15 | syl |  | 
						
							| 17 | 12 | subgbas |  | 
						
							| 18 | 16 17 | syl |  | 
						
							| 19 | 1 | subgss |  | 
						
							| 20 | 16 19 | syl |  | 
						
							| 21 | 3 20 | ssfid |  | 
						
							| 22 | 18 21 | eqeltrrd |  | 
						
							| 23 |  | pwfi |  | 
						
							| 24 | 3 23 | sylib |  | 
						
							| 25 |  | slwsubg |  | 
						
							| 26 | 1 | subgss |  | 
						
							| 27 | 25 26 | syl |  | 
						
							| 28 | 25 27 | elpwd |  | 
						
							| 29 | 28 | ssriv |  | 
						
							| 30 |  | ssfi |  | 
						
							| 31 | 24 29 30 | sylancl |  | 
						
							| 32 |  | eqid |  | 
						
							| 33 |  | eqid |  | 
						
							| 34 | 10 11 14 22 31 32 33 | sylow2a |  | 
						
							| 35 |  | eqcom |  | 
						
							| 36 | 20 | adantr |  | 
						
							| 37 | 36 | sselda |  | 
						
							| 38 | 37 | biantrurd |  | 
						
							| 39 | 35 38 | bitrid |  | 
						
							| 40 |  | simpr |  | 
						
							| 41 |  | simplr |  | 
						
							| 42 |  | simpr |  | 
						
							| 43 |  | simpl |  | 
						
							| 44 | 43 | oveq1d |  | 
						
							| 45 | 44 43 | oveq12d |  | 
						
							| 46 | 42 45 | mpteq12dv |  | 
						
							| 47 | 46 | rneqd |  | 
						
							| 48 |  | vex |  | 
						
							| 49 | 48 | mptex |  | 
						
							| 50 | 49 | rnex |  | 
						
							| 51 | 47 8 50 | ovmpoa |  | 
						
							| 52 | 40 41 51 | syl2anc |  | 
						
							| 53 | 52 | eqeq1d |  | 
						
							| 54 |  | slwsubg |  | 
						
							| 55 | 54 | ad2antlr |  | 
						
							| 56 |  | eqid |  | 
						
							| 57 | 1 5 6 56 9 | conjnmzb |  | 
						
							| 58 | 55 57 | syl |  | 
						
							| 59 | 39 53 58 | 3bitr4d |  | 
						
							| 60 | 59 | ralbidva |  | 
						
							| 61 |  | dfss3 |  | 
						
							| 62 | 60 61 | bitr4di |  | 
						
							| 63 | 18 | adantr |  | 
						
							| 64 | 63 | raleqdv |  | 
						
							| 65 |  | eqid |  | 
						
							| 66 | 2 | ad2antrr |  | 
						
							| 67 | 9 1 5 | nmzsubg |  | 
						
							| 68 | 66 67 | syl |  | 
						
							| 69 |  | eqid |  | 
						
							| 70 | 69 | subgbas |  | 
						
							| 71 | 68 70 | syl |  | 
						
							| 72 | 3 | ad2antrr |  | 
						
							| 73 | 1 | subgss |  | 
						
							| 74 | 68 73 | syl |  | 
						
							| 75 | 72 74 | ssfid |  | 
						
							| 76 | 71 75 | eqeltrrd |  | 
						
							| 77 | 7 | ad2antrr |  | 
						
							| 78 |  | simpr |  | 
						
							| 79 | 69 | subgslw |  | 
						
							| 80 | 68 77 78 79 | syl3anc |  | 
						
							| 81 |  | simplr |  | 
						
							| 82 | 54 | ad2antlr |  | 
						
							| 83 | 9 1 5 | ssnmz |  | 
						
							| 84 | 82 83 | syl |  | 
						
							| 85 | 69 | subgslw |  | 
						
							| 86 | 68 81 84 85 | syl3anc |  | 
						
							| 87 | 1 | fvexi |  | 
						
							| 88 | 9 87 | rabex2 |  | 
						
							| 89 | 69 5 | ressplusg |  | 
						
							| 90 | 88 89 | ax-mp |  | 
						
							| 91 |  | eqid |  | 
						
							| 92 | 65 76 80 86 90 91 | sylow2 |  | 
						
							| 93 | 9 1 5 69 | nmznsg |  | 
						
							| 94 | 82 93 | syl |  | 
						
							| 95 |  | eqid |  | 
						
							| 96 | 65 90 91 95 | conjnsg |  | 
						
							| 97 | 94 96 | sylan |  | 
						
							| 98 |  | eqeq2 |  | 
						
							| 99 | 97 98 | syl5ibrcom |  | 
						
							| 100 | 99 | rexlimdva |  | 
						
							| 101 | 92 100 | mpd |  | 
						
							| 102 |  | simpr |  | 
						
							| 103 | 16 | ad2antrr |  | 
						
							| 104 | 102 103 | eqeltrd |  | 
						
							| 105 | 104 83 | syl |  | 
						
							| 106 | 102 105 | eqsstrrd |  | 
						
							| 107 | 101 106 | impbida |  | 
						
							| 108 | 62 64 107 | 3bitr3d |  | 
						
							| 109 | 108 | rabbidva |  | 
						
							| 110 |  | rabsn |  | 
						
							| 111 | 7 110 | syl |  | 
						
							| 112 | 109 111 | eqtrd |  | 
						
							| 113 | 112 | fveq2d |  | 
						
							| 114 |  | hashsng |  | 
						
							| 115 | 7 114 | syl |  | 
						
							| 116 | 113 115 | eqtrd |  | 
						
							| 117 | 116 | oveq2d |  | 
						
							| 118 | 34 117 | breqtrd |  | 
						
							| 119 |  | prmnn |  | 
						
							| 120 | 4 119 | syl |  | 
						
							| 121 |  | hashcl |  | 
						
							| 122 | 31 121 | syl |  | 
						
							| 123 | 122 | nn0zd |  | 
						
							| 124 |  | 1zzd |  | 
						
							| 125 |  | moddvds |  | 
						
							| 126 | 120 123 124 125 | syl3anc |  | 
						
							| 127 | 118 126 | mpbird |  | 
						
							| 128 |  | prmuz2 |  | 
						
							| 129 |  | eluz2b2 |  | 
						
							| 130 |  | nnre |  | 
						
							| 131 |  | 1mod |  | 
						
							| 132 | 130 131 | sylan |  | 
						
							| 133 | 129 132 | sylbi |  | 
						
							| 134 | 4 128 133 | 3syl |  | 
						
							| 135 | 127 134 | eqtrd |  |